
 

   

 

 

 
 

 

 

 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 2 

Lesson 9 – Building Multi-Client, Multi-Platform, Multi-Tier 

Applications 
Version: 0.99 

Presented: June 28, 2012 

Last Updated: August 1, 2012 

Prepared by: David Intersimone “David I”, Embarcadero Technologies  

© Copyright 2012 Embarcadero Technologies, Inc.  All Rights Reserved. 

davidi@embarc adero.com  

http://blogs.embarc adero.com/davidi/  

 

 

Contents 
 
Lesson 9 – Building Multi-Client, Multi-Platform, Multi-Tier Applications ................................................. 2 

Introduction......................................................................................................................................... 4 

Creating Multi-Tier Applications........................................................................................................... 4 

RAD Studio Target Platforms ............................................................................................................ 6 

Debugging Multi-Client, Multi-Platform, Multi-Tier Applications ...................................................... 7 

Developing DataSnap Applications ....................................................................................................... 9 

Developing your first Windows and Mac DataSnap Application...................................................... 10 

Step 1: Creating the DataSnap Server Application....................................................................... 11 

Step 2: Creating a Windows and Mac DataSnap Client Application ............................................. 20 

Creating a Windows and Mac Multi-Tier Database Application ...................................................... 27 

Step 1: Create a new FireMonkey DataSnap Server Project......................................................... 27 

Step 2: Add the DataSnap Server components ............................................................................ 28 

Step 3 – link the DataSnap server components together............................................................. 28 

Step 4 – Add a ServerModule to your project ............................................................................. 28 

Step 5 – Add Database Components to your DataSnap Server Project ........................................ 31 

Step 6- Add Functions to Your  Server Module  ............................................................................ 32 

Step 7 - Write the Server Side Code for the Function You  Just Added.  ........................................ 33 

Step 8 – Add the OnGetClass Event Handler for the DataSnap Server Class................................. 34 

Step 9 – Create the Client Application Project ............................................................................ 35 

Step 10 – Connect the DataSnap Client to the DataSnap Server.................................................. 35 

Step 11 – Start Building the DataSnap Client Application User Interface ..................................... 36 

Step 12- Add Client Side Database Components ......................................................................... 37 

mailto:davidi@embarcadero.com
http://blogs.embarcadero.com/davidi/


E-Learning Series: Getting Started with Windows and Mac Development 

Page 3 

Step 13 – Add Event Handlers for the CheckBox  and Apply Updates button................................ 39 

Step 14 – Add Button  Event  Handler Code for  the Stored Procedure Call .................................... 42 

Step 15 – Build and Run the Windows DataSnap Client Application ............................................ 43 

Step 16 – Build and Run the Mac DataSnap Client Application .................................................... 44 

Creating REST,  WebBroker and  Service based DataSnap Server Applications.................................. 46 

Filtering DataSnap Byte Streams .................................................................................................... 47 

Defining a Filter.......................................................................................................................... 48 

Implement the Filter Code.......................................................................................................... 49 

Registering a filter ...................................................................................................................... 49 

The Encryption Filter .................................................................................................................. 50 

The Compression Filter............................................................................................................... 50 

Using Web Services in your Windows and Mac Applications .............................................................. 51 

Creating a Web Service Application and a Windows and Mac Client application that uses the 

services.......................................................................................................................................... 52 

Step 1 – Create the simple calculator SOAP server application.................................................... 53 

Step 2 – Create the starting Web Service Interface ..................................................................... 55 

Step 3 – Define and implement your  Web Service methods ........................................................ 56 

Step 4 – Run  your  SOAP  Web Server  Application. ....................................................................... 57 

Step 5 – Create a FireMonkey Client Application that will consume the Web Service .................. 59 

Step 6 – Use the WSDL importer to  create an Web Services interface unit for your  client 

application ................................................................................................................................. 59 

Step 7 – Create the UI for  the Client Application and use the Web Service Methods ................... 63 

Step 8 – Compile and Run the Client Application ........................................................................ 66 

Using Cloud Storage and Services in your Windows and Mac Applications ......................................... 68 

RAD Studio Cloud Services ............................................................................................................. 68 

Azure Cloud Service ....................................................................................................................... 69 

Amazon Cloud Service.................................................................................................................... 69 

Building your first Cloud base Windows and Mac Application......................................................... 69 

Deploy your application to the Cloud ............................................................................................. 70 

Summary, Looking Beyond, To Do Items, Resources, Q&A and the Quiz  ............................................. 70 

To Do Items ................................................................................................................................... 71 

Links to Additional Resources......................................................................................................... 71 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 4 

Q&A:.............................................................................................................................................. 71 

Self Check Quiz .............................................................................................................................. 72 

Answers to the Self Check Quiz:  ................................................................................................. 72 

 

Introduction 

 

Not every application is a standalone desktop application that runs on just one p latform.  Software 

systems often involve a series of client applications working with remote databases and remote business 

objects.  There will be many times when you will need to build multi -client, multi-platform, multi-tier 

applications for Windows and Mac.  As you  have seen in the earlier lessons, you can create multi -

platform Windows, Mac and iOS applications that have HD and 3D user interfaces and connect to Data.  

What if you  need to build and/or  connect to business objects and services as part of yo ur  architecture?  

RAD Studio supports the building of multi -client, multi-platform and multi-tier applications. 

 

RAD Studio includes the following technologies and components that support the creation of 

applications for multi-client, multi-platform and multi-tier: 

 

 FireMonkey HD and 3D client applications – Win32 (Delphi and C++), Win64 (Delphi), Mac OSX  

(Delphi and C++) client applications 

 VCL client applications - Win32 (Delphi and C++),  Win64 (Delphi)  

 Console client applications – Win32 (Delphi and C++), Win64 (Delphi), Mac OSX  (Delphi and C++)  

 Web service client access – Win32 (Delphi and C++), Win64 (Delphi), Mac OSX  (Delphi and C++)  

 Cloud storage client application access – Amazon S3 and Microsoft Windows Azure  

 DataSnap client application access – Win32 (Delphi and C++), Win64 (Delphi), Mac OSX  (Delphi 

and C++) 

 DataSnap Application Servers – VCL,  FireMonkey,  Console Application, Service Application - 
Win32 (Delphi and C++),  Win64 (Delphi)  

 Web Application Servers – Win32 (Delphi and C++),  Win64 (Delphi)  

 Web Services - Win32 (Delphi and C++) and Win64 (Delphi)  
 

In lesson 9 we’ll focus on building multi-client, multi-platform, multi-tier applications using FireMonkey, 

DataSnap, Web Services and Cloud Storage. 

 

Creating Multi-Tier Applications 

 

A multi-tiered application is partitioned into logical units, called tiers, which run in conjunction on 

separate machines. Multi-tiered applications share data and communicate with one another over a 

local-area network or even over the Internet. They provide many adva ntages of the multi-tiered 

database model, such as centralized business logic and thin client applications. 

 
In its simplest form, sometimes called the "three-tiered model", a multi-tiered application is partitioned 

into thirds: 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 5 

 Client application: provides a user interface on the user's machine. 

 Application server: resides in a central networking location accessible to all clients and provides 
common data services. 

 Remote database server: provides the relational database management system (RDBMS).  

 

In this three-tiered model, the application server manages the flow of data between clients and the 

remote database server, so it is sometimes called a "data broker." You usually only create the 

application server and its clients, although, if you are really ambitious, you could create your own 

database back end as well. 

 

In more complex multi-tiered applications, additional services reside between a client and a remote 

database server. For example, there might be a security services broker to handle secure Inter net 

transactions, or bridge services to handle sharing of data with databases on other platforms.  

 

Support for  developing multi-tiered applications is an extension of the way client datasets communicate 

with a provider component using transportable data pa ckets.  Once you  understand how to create and 

manage a three-tiered application, you can create and add additional service layers based on your  

needs. 

 

The advantages of this multi-tiered model include the following: 

 Encapsulation of business logic in a shared middle tier. Different client applications all access the 
same middle tier. This allows you to avoid the redundancy (and maintenance cost) of duplicating 

your business rules for each separate client application. 

 

 Thin client applications. Your client applications can be written to make a small footprint by 

delegating more of the processing to middle tiers. Not only are client applications smaller, but 

they are easier to deploy because they don't need to worry about installing, configuring, and 

maintaining the database connectivity software (such as the database server's client -side 

software). Thin client applications can be distributed over the Internet for additional flexibility.  

 Distributed data processing. Distributing the work of an application over  several machines can 
improve performance because of load balancing, and allow redundant systems to take over 

when a server goes down.  

 Increased opportunity for security. You can isolate sensitive functionality into tiers that have 

different access restrictions. This provides flexible and configurable levels of security. Middle 

tiers can limit the entry points to sensitive material, allowing you to  control access more easily. 

If you  are using HTTPS,  you can take advantage of the  security models it supports. 

 

Multi-tiered applications use the components on the DataSnap page, the Data Access page, and possibly 

the Web Services page of the Tool Palette, plus a remote data module that is created by a wizard on  the 

Multitier or Web Services page of the  New Items dialog. They are based on the ability of provider 

components to package data into transportable data packets and handle updates received as 

transportable delta packets. 

 

The components needed for a  multi -tiered application include: 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 6 

 Remote and Server data modules - Specialized data modules that can act as a COM Automation 

server, a DataSnap data module, RESTful  web servers, or implement a Web Service to give client 

applications access to any providers they contain. Used on the application server. 

 Provider component - A data broker that provides data by creating data packets and resolves 
client updates. Used on the application server. 

 Client dataset component - A specialized dataset used to manage data stored in data packets. 

The client dataset is used in the client application. It caches updates locally, and applies them in 

delta packets to the application server. 

 Connection components - A family of components that locate the server, form connections, and 
make the IAppServer interface available to client datasets. Each connection component is 

specialized to use a particular communications protocol. 

 

 
 

The provider and client dataset components require midas.dll or midaslib.dcu, which manages datasets 

stored as data packets.  Note that, because the provider is  used on the application server and the client 

dataset is used on the client application, if you  are using midas.dll, you must deploy it on  both 

application server and client application.  See the deploy.htm file in your installation directory for 

additional important information about redistributables. 

 

RAD Studio Target Platforms 

 

RAD Studio supports the following target platforms and associated frameworks: 

 

 Mac OS X  hosts only FireMonkey development (Delphi and C++Builder).  

 32-bit Windows hosts FireMonkey and VCL development (Delphi and C++Builder).  

 64-bit Windows hosts FireMonkey and VCL development (Delphi only).  
 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 7 

You specify the target platform for your application by selecting from the Targets node of the Project 

Manager. 

 

Other Multi-Platform Development support is included for 

 

 FireMonkey application development for iOS devices is supported for iPhone, iPad, and iPod. 

However, FMX  iOS is not technically a target platform that you can select in the IDE.  

 DataSnap supports native-language development for mobile devices using special DataSnap 
connectors that we provide for (using the  mobile connectors is beyond the scope of this getting 

started course – see links to articles and videos at the end of this lesson if you need to support 

these mobile devices): 

o iOS devices using the Objective-C iOS DataSnap proxy 

o iOS devices using the Free Pascal DataSnap proxy 

o Windows 7 Phone using the C# Silverlight DataSnap proxy 

o Android using the Java Android DataSnap proxy 

o Blackberry using the Java BlackBerry DataSnap proxy 

 

The Embarcadero DocWiki has a summary of the types of multi -platform applications you can build at 

http://docwiki.embarcadero.com/RADStudio/en/Types_of_Cross-

Platform_Applications_You_Can_Create 

 

For information about building Web Applications using WebSnap, read the Embarcadero DocWiki article 

at http://docwiki.embarcadero.com/RADStudio/en/Developing_Web_Applications_with_WebSnap . 

 

Debugging Multi-Client, Multi-Platform, Multi-Tier Applications 

 

The integrated RAD Studio debugger  enables you to debug an application that targets any of the 

Supported Target Platforms. The integrated debugger works with both  Delphi and C++ applications. 

 

RAD Studio supports two cross -platform debuggers: 

 

 Embarcadero Win64 Debugger (on  a PC running a 64-bit Windows OS) 

 Embarcadero OS X  Debugger  (on  a Mac running a version of OS X ) 

 

When you install the Platform Assistant on your target platform, the cross -platform debuggers are are 

also installed. The debuggers that are registered on your system are listed in Tools > Options > 

Debugger Options.  

 

http://docwiki.embarcadero.com/RADStudio/en/Types_of_Cross-Platform_Applications_You_Can_Create
http://docwiki.embarcadero.com/RADStudio/en/Types_of_Cross-Platform_Applications_You_Can_Create
http://docwiki.embarcadero.com/RADStudio/en/Developing_Web_Applications_with_WebSnap


E-Learning Series: Getting Started with Windows and Mac Development 

Page 8 

 
 
The Platform Assistant and a remote profile are required for establishing a debug session for an 

application running on a cross -platform target system. The only cross -platform configuration that does 

not require the Platform Assistant is a Win64 development system. 

 

The cross-platform debugger and the process to be debugged both  run on  the target platform. The 

cross-platform debugger reports status and interacts with you on the development PC in the  RAD Studio 

IDE. This means that using one of the cross -platform debuggers is very similar to using the integrated 

debugger for  Win32 applications. 

 

To do  cross-platform debugging:  

 

 Your application must have an activated target platform (Win64, OS X, or  remote Win32).  

 Depending on the target platform: 

o For the Mac OS X:  

 The Platform Assistant must be running on the Mac. 

 Your application must have an assigned remote profile. 

 Your development system must have a live connection to the Mac (that is, Test 
Connection must succeed on the Remote Profiles window). This enables you to 

use both the integrated debugger and the Deployment Manager.  

o For 64-bit Windows:  

 If you  are connecting to a remote 64-bit PC:  

 You must use the Platform Assistant and a remote profile. 

 Your development system must have a live connection to the remote 

64-bit PC (that is, Test Connection must succeed on the Remote Profiles 

window). This enables you to use both the  integrated debugger and the 

Deployment Manager. 

 If your  development system is a PC running a 64-bit Windows operating system: 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 9 

 You do not need to  use the Platform Assistant because your debug 

environment is in-machine, and the integrated debugger runs 

automatically. 

 You can, however, optionally choose to use the Platform Assistant and a 
remote profile for the target platform just as you would for  a remote 

64-bit Windows target system. Doing this enables you to use the 

Deployment Manager. 

 

Debugging on  OS X  is a privileged operation; only a process with adequate access rights can act as a 

debugger.  In  order to  guarantee support for debugging on  the Mac, you need to  log in  on the Developer 

Tools Access dialog box using the administrator or root user password.  The first time you start the 

Platform Assistant in a session (or when you  start a debugging session on the Mac), the  Mac displays a 

login dialog for Developer Tools Access. You need to provide the  password for the root  user on that 

Mac. The password is required only once per session. 

 

Developing DataSnap Applications 

 

The DataSnap technology continues to evolve, as the demands for distributed computing increase.  The 

technology behind DataSnap has moved beyond the approach of remoting data through the Microsoft 

COM/DCOM to a  more open communication approach based on TCP/IP. This evolution has allowed the 

DataSnap technology to expand its capabilities in order to i nclude a complete middleware technology. 

One of the key features of the technology is that it is fast: fast to build, fast to deploy, and fast to 

execute in production. 

 

DataSnap now has expanded capabilities, allowing the technology to work within almost any standards-

based infrastructure. While the latest DataSnap is still backwards -compatible with the COM/DCOM 

approach, it now has the ability to communicate natively through TCP /IP, and alternatively through 

HTTP  or HTTPS. At the  same time, the business logic found in the DataSnap servers can be broadcast as 

RESTful (Representational State Transfer) web services. 

 

DataSnap provides a way for the  Client to safely communicate with the Server, using a secured transfer 

of JSON (JavaScript Object Notation) data  content over TCP/IP  or HTTP. The ability to define filters at 

both ends of the  communication channel, for encryption and compression purposes, improves the 

security. 

 

Another benefit of the DataSnap technology is that it offers the possibility to asynchro nously notify all 

the Client applications about changes made to the Server, so that Clients can take appropriate actions. 

The callback does not require Clients to invoke any of the Server methods.  

 

Once you  purchase the enterprise or architect edition of RAD Studio X E2, Delphi XE2  or C++Builder XE2, 

there are no additional charges to use or deploy the DataSnap technology. 

 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 10 

 
 
You can find DataSnap sample applications (that are installed with RAD Studio) by choosing Start | 

Programs | Embarcadero RAD Studio XE2  | Samples. The folders of interest are DataSnapXE, containing 

DataSnap XE multiplatform demos, and Delphi\DataSnap, containing several DataSnap application 

examples. These DataSnap samples are called, by their folder name:  

 

 Basic DataSnap Client and Server Sample - 

http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Basic_DataSnap_Client_and

_Server_Sample  

 Role Authorization Sample - 

http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Role_Authorization_Sample   

 Chat Room Sample - 
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.ChatRoom_Sample   

 Failover - DataSnap HTTP  Tunneling Sample - 

http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Failover_-

_DataSnap_HTTP _Tunneling_Sample  

 JSON Viewer Sample - 
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.JSON_Viewer_Sample   

 Proxy Generator Sample - 

http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Proxy_Gener ator_Sample  

 

Developing your first Windows and Mac DataSnap Application 

 

DataSnap technology provides the ability to create Client -Server applications that communicate through 

the Internet, the local network, or the local host.  

 

The following steps show you how to create and use DataSnap to build a simple server and client 

application.  After creating the server and activating the connection between the client and server with 

DataSnap, the client can call methods defined and implemented on the DataSnap server.  You’ll learn 

how to use databases in your DataSnap applications in the next section. 

 

http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Basic_DataSnap_Client_and_Server_Sample
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Basic_DataSnap_Client_and_Server_Sample
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Role_Authorization_Sample
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.ChatRoom_Sample
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Failover_-_DataSnap_HTTP_Tunneling_Sample
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Failover_-_DataSnap_HTTP_Tunneling_Sample
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.JSON_Viewer_Sample
http://docwiki.embarcadero.com/CodeExamples/XE2/en/DataSnap.Proxy_Generator_Sample


E-Learning Series: Getting Started with Windows and Mac Development 

Page 11 

You can implement a server in either Delphi or C++. This example shows both. The client does not need 

to be implemented in the same language. DataSnap allows you t o have a Delphi server and a C++ 

client—or vice versa. 

 

The main DataSnap Server Components are  

 

 TDSServer - The TDSServer  component is the logical heart of the DataSnap server application. It 

contains Start and Stop methods for  starting and stopping the s erver. It also contains the 

AutoStart property. By default, the value of AutoStart is set to True, so the server starts 
automatically when the application does. You need only one TDSServer component per server 

application. 

 

 TDSServerClass - The TDSServerClass component represents a server class. 

 

The DataSnap server automatically creates and destroys instances of server classes. The instancing of a 

server class is controlled by the LifeCycle property of the TDSServerClass component. The LifeCycle 

property has three possible values: Server, Session, and Invocation. 

 

 LifeCycle set to Server means that the DataSnap server creates one instance of a server class 

that is used by all clients connected to the server application. This represents a "singleton" 

pattern. Be careful when using the Server life cycle, because your server class implementation 

needs to be thread-safe: you must design the server class so that it can be accessed 

simultaneously from multiple threads. 

 The default value of LifeCycle is Session. This means that the DataSnap server creates one 
instance of a server class for every connected client. 

 The third possible value for the LifeCycle property is Invocation. In this case, a server class 

instance is created and destroyed for every method call arr iving from a client, and the state of a 

server class is not preserved between method calls. 

 

A component is also needed to provide communication between the client and server. 

 

The TDSTCP ServerTransport component implements a multithreaded TCP server liste ning for incoming 

client connections on multiple threads. This component does not have any events. The Port property 

indicates the TCP port to be  used. By de fault, it is set to 211. You can also use HTTP  for  communication 

between the client and server. 

 

Step 1: Creating the DataSnap Server Application 

 

Three wizards are included to help you start DataSnap projects for Delphi and C++:  

 

 DataSnap Server – The DataSnap Server wizard provides an easy way to implement a server 
application using the DataSnap technology. 

 DataSnap WebBroker Application – The DataSnap WebBroker Application wizard provides an 

easy way to implement a server application using both The WebBroker and DataSnap 

technologies. 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 12 

 DataSnap REST Application – Creates a DataSnap Server with support for REST communication 

and with Web pages that invoke server methods using JavaScript and JSON.  

 

 
 

 
 

You can also build a console application or FireMonkey application and add the DataSnap server 

components into these applications. 

 

For this getting started lesson, we’ll use the DataSnap Server wizard. To start the wizard use File > New 
> Other…  and choose the DataSnap Server wizard from the Delphi Projects > DataSnap Server category 

or C++Builder Projects > DataSnap Server category.  

 

After you  select the Wizard you will see the wizard present 4 dialogs that will help you create your 

DataSnap Server application.  The DataSnap Server Wizard provides an easy way to implement a server 

application using the DataSnap technology. Regardless of the options you se lect, it creates a 

ServerContainerUnit that contains a TDSServer component. All the additional components are 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 13 

connected to the TDSServer, having the Server property set to the name of the TDSServer component. I f 

the selected protocol is TCP/IP, the server unit also contains a TDSTCPServerTransport. If HTTP  is 

selected as the communication protocol, the server unit contains a TDSHTTP Service component. If 

HTTPS is selected, then the server unit will contain a TDSHTTP Service component configured for HTTPS 

operations.  

 

In the first step (step 1 of 4) the wizard gives you the choice for  the type of application you want for  your  

DataSnap server.  Choices are:  VCL application, Console Application and Service application.  As I 

mentioned earlier, if you want your  DataSnap Server application to have a UI you  can create a 

FireMonkey project and put the  DataSnap server components in your application. 

 

To keep things simple, we’ll create a VCL Forms Application for our  DataSnap Server.  This will give your 

DataSnap server a simple UI where you can place additional controls to display, for example, a 

dashboard of how many DataSnap clients are connected to the server. 

 

 
 

The wizard next (step 2 of 4) asks you what server features you want included in your DataSnap Server 

application. Every feature in the check list is self-descriptive: select one and a hint will appear in the 

upper side of the wizard.  

 

The available communication protocols are:  

 

 TCP/IP  

 HTTP   



E-Learning Series: Getting Started with Windows and Mac Development 

Page 14 

 HTTPS  

 

You can select them in each combination you want, but  make sure TCP /IP is always selected. Selecting a 

communication protocol from this list enables the selection of communication ports for the protocols 

that are selected, in the next step of the DataSnap Server Wizard. I f you  select HTTPS as the 

communication protocol, the DataSnap Server Wizard will display an additional page, asking for 

information regarding certificate files. 

 

If you  select the Authentication option, a TDSHTTPServiceAuthenticationManager component is placed 
on the server form.  The TDSHTTPService component uses TDSHTTPServiceAuthenticationManager as 

the AuthenticationManager to allow the implementation of HTTP  user authentication for the DataSnap 

server. The implementation consists in implementing the Authenticate event. When Authentication  is 

selected, the client must provide the DataSnap user name and password as SQL connection properties.  

 

Selecting the Server Methods Class option will add a TDSServerClass component to the server form that 

allows defining a class on the server, which wil l expose server methods to client applications.  

 

If you  select the Sample Methods option, then the ServerMethodsUnit will contain the implementation 

of two simple methods called EchoString and ReverseString, which return the Value given as parameter 

in normal respective reversed states.  

 

The Filters category specifies which filters the DataSnap Server will employ. You can chose to include an 

Encryption filter, a Compression filter, or both:  

 

 The Encryption filter adds a PC1 and RSA filters for the select ed communication protocols. Note 

that the RSA filter requires the OpenSSL libraries to be present on the server and on any client 

that will connect to this server.  

 The Compression filter adds a ZLib compression filter for the selected communications 
protocols.  

 The JavaScript files set up the project with the JavaScript framework and proxy generator.  

 

If you  select Mobile Connectors, your project supports proxy dispatching for applications on mobile 

devices such as Android, Windows 7 Phone, and iPhone. For  more information, see DataSnap 

Connectors for Mobile Devices  on the Embarcadero DocWiki at 

http://docwiki.embarcadero.com/RADStudio/en/Getting_Starte d_with_DataSnap_Mobile_Connectors .  

 

We’ll keep it simple and just use TCP/IP and have the wi zard generate sample methods for our  client to 

use. 

 

http://docwiki.embarcadero.com/RADStudio/en/Getting_Started_with_DataSnap_Mobile_Connectors


E-Learning Series: Getting Started with Windows and Mac Development 

Page 15 

 
 
In the 3rd wizard step (step 3 of 4),  the DataSnap wizard asks you for  the Port number  for  your  TCP /IP 

based DataSnap server.  You  can choose any port you  want (or a port  that is opened for you in your 

firewall).  There is also “Test Port” button to make sure the port is actually available for use.  There is a 

second button that you can use to find  an open port.  Note that if you  select the HTTPS feature in the 

previous step, you have to specify the HTTPS communications port also.  The same buttons as for the 

TCP/IP communication port are available: Test Port and Find Open Port.  Leave the default choice for 

port 211 and click the “Test Port” button to make sure this port is available.  If you get  a “Test Port 

Succeeded” dialog box, then you  are okay to proceed.  

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 16 

 
 

The final wizard step (step 4 of 4 ) lets you select an ancestor type for the server methods class .  Choose 

TDSServerModule to expose datasets from the server to client applications. Choose TDataModule if you 

want to use non-visual components in your server class. Choose TComponent if you want to  entirely 

implement the server class.  For this first DataSnap server leave the default choice, TComponent. 

 

 
 

If you  chose to have additional features in the DataSnap wizard, you may see additional wizard steps. 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 17 

 

Click the “Finish” button and you’ll see that a DataSnap server application project is created  with a 

ServerContainerUnit, ServerMethodsUnit and a Server Unit.  Save the project to a folder and use 

“DelphiDataSnapServer” or “CppDataSnapServer” for the project name  and use ServerUnit for the 

server unit name. 

 

     
 

 
 
The ServerMethodsUnit contains the source code for the implementation of the sample DataSnap server 

methods generated by the wizard (if you  chose that option): 

 
// Delphi – ServerMethodsUnit1.pas 
unit ServerMethodsUnit1; 
 
interface 
uses System.SysUtils, System.Classes, Datasnap.DSServer, 
     Datasnap.DSAuth; 
 
type 
{$METHODINFO ON} 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 18 

  TServerMethods1 = class(TComponent) 
  private 
    { Private declarations } 
  public 
    { Public declarations } 
    function EchoString(Value: string): string; 
    function ReverseString(Value: string): string; 
  end; 
{$METHODINFO OFF} 
 
implementation 
 
uses System.StrUtils; 
 
function TServerMethods1.EchoString( 
    Value: string): string; 
begin 
  Result := Value; 
end; 
function TServerMethods1.ReverseString( 
    Value: string): string; 
begin 
  Result := System.StrUtils.ReverseString(Value); 
end; 
end. 

 
// C++ - ServerMethodsUnit1.cpp 
//-------------------------------------------------------- 
#include <SysUtils.hpp> 
#pragma hdrstop 
 
#include "ServerMethodsUnit1.h" 
//-------------------------------------------------------- 
#pragma package(smart_init) 
//-------------------------------------------------------- 
System::UnicodeString TServerMethods1::EchoString( 
    System::UnicodeString value) 
{ 
    return value; 
} 
//-------------------------------------------------------- 
System::UnicodeString TServerMethods1::ReverseString( 
    System::UnicodeString value) 
{ 
    return ::ReverseString(value); 
} 
//-------------------------------------------------------- 
 
// C++ - ServerMethodsUnit1.h 
//-------------------------------------------------------- 
 
#ifndef ServerMethodsUnit1H 
#define ServerMethodsUnit1H 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 19 

//-------------------------------------------------------- 
#include <Classes.hpp> 
#include <DSServer.hpp> 
//-------------------------------------------------------- 
class DECLSPEC_DRTTI TServerMethods1 : public TComponent 
{ 
private:  // User declarations 
public:   // User declarations 
    System::UnicodeString EchoString( 
        System::UnicodeString value); 
    System::UnicodeString  ReverseString( 
        System::UnicodeString value); 
}; 
#endif 
 

 
Your DataSnap server application is ready to compile and run on Windows.  Set the Target Platforms  

node in the Project Manager view to  Win32 (Delphi and C++) or  Win64 (Delphi).   Right -click on the 

DataSnap Server application and Choose Run without  Debugging  from the Context Menu to  start the 

DataSnap Server application (this allows you to also run your  DataSnap client application form the IDE).  

 

When the DataSnap Server application starts you will see the server main window and you will also see 

(if you  have Windows Firewall turned on) a  Windows Security Alert.  The Alert happens when the 

DataSnap server tries to use port 211. 

 

 
 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 20 

Click the “Allow Access” button on the security alert window.  Your  DataSnap server application is now 

listening on port 211 for Client applications to call its methods. When you want to stop the DataSnap 

Server console application, hit ALT-F4 or  click on the close application button. 

 

Step 2: Creating a Windows and Mac DataSnap Client Application 

 

To create the client application in the same project group as the server application you just created, 

right-click on the name of your  project group in the Project Manager and select Add Ne w Project  from 

the context menu.  The  New Items dialog box appears. 

 

For Delphi, select the Delphi Projects category, then select FireMonkey HD Application and click OK.  

For C++,  select the C++Builder Projects category, then select FireMonkey HD Application  and click OK.  

 

Set the form's Caption and Name properties to Delphi DataSnap Client and DelphiDataSnapClientForm 

or C++ DataSnap Client and CppDataSnapClientForm. Click the main menu item File > Save All. Save the 

unit file as DelphiClientUnit or CppClientUnit and save the project as DelphiDataSnapClient or 

CppDataSnapClient. Save the Project Group as DelphiDataSnapprojectGroup or 

CppDataSnapProjectGroup. 

 

Next you’ll create the UI for  your Windows and Mac application.  Add a TEdit, TLabel and two TButton(s) 

to your client application.  Arrange and resize them so they look something like the following form:  

 

     
 

Set the Text  and Name  properties for Button1 to  “Echo String” and “ EchoStringButton”.  Set the Text 

and Name properties for Button2 to  “Reverse String” and “ReverseStringButton”. 

 

Add a TSQLConnection component from the dbExpress category in the Tool Palette. Set the following 

properties for the TSQLConnection component using the Object Inspector: 

 

 Driver: Datasnap (from the client's perspective, this provider looks like a connection to a 
database, but in fact provides connectivity to DataSnap servers.) 

 LoginPrompt: False (optional, to prevent the user name and password dialog from appearing 

every time the client connects to the server.) 

 If you  chose a port number that is different from port 211 in the  wizard, you’ll need to use the 

Object Inspector, double click on the Params property and change  the Port  parameter. If you 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 21 

are running your DataSnap server on a different Windows machine you’ll need to double click 

on the Params property and change the HostName parameter. 

 

 
 

 
 

The DataSnap client application form should now look something like:  

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 22 

     
 

The most important step in creating the DataSnap Client application is creating the interface that 

contains the prototype of all functions implemented on the DataSnap server. Do this as follows: 

 

 Activate the DataSnap server project by double-clicking the name of the server project in Project 
Manager. 

 Choose Run > Run Without Debugging from the  main menu to run  the DataSnap server (unless 

it is already running). 

 While the server is running, activate the DataSnap client project by double-clicking its name in 
the Project Manager. 

 In the Design tab, set the Connected property of the TSQLConnection component to True.  If this 

works, your DataSnap client is now connected to your Dat aSnap server at design time. 

 Right-click the TSQLConnection component on  the Client form and click “Generate DataSnap 

client classes” in the context menu. A new unit is added to your  client project, containing 

information about classes implemented on the s erver and all the methods contained by these 

classes. 

 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 23 

 

o For Delphi, save the new unit as DataSnapClientClasses.pas.  Select the DelphiClientUnit 

form and then  use File > Use Unit, select the unit and click the OK button  to add the 

client classes unit's name (DataSnapClientClasses) to the implementation section of your 

DataSnapClient.pas file. 

 

 
 

o For C++,  save the new unit as DataSnapClientClasses.cpp. Add the following line to the 

beginning of the CppDataSnapClient.cpp file: 

 
#include "DataSnapClientClasses.h" 

 

Add event handlers for each of the TButton(s) that will call the DataSnap server methods to echo and 

reverse the text typed into the TEdit box.   Here is the code for  each Button event handler (Delphi and 

C++ code):  

 
// Delphi: 
procedure TDelphiDataSnapClientForm.EchoStringButtonClick( 
    Sender: TObject); 
var 
  Temp : TServerMethods1Client; 
Begin 
  Temp := TServerMethods1Client.Create( 
    SQLConnection1.DBXConnection); 
  try 
    Label1.Text := Temp.EchoString(Edit1.Text) 
  finally 
    Temp.Free(); 
  end 
end; 
 
procedure TDelphiDataSnapClientForm.ReverseStringButtonClick( 
    Sender: TObject); 
Var 
  Temp : TServerMethods1Client; 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 24 

begin 
  Temp := TServerMethods1Client.Create( 
    SQLConnection1.DBXConnection); 
  try 
    Label1.Text := Temp.ReverseString(Edit1.Text) 
  finally 
    Temp.Free() 
  end 
end; 
 
 
// C++: 
//-------------------------------------------------------------- 
void __fastcall TCppDataSnapClientForm::EchoStringButtonClick( 
    TObject *Sender) 
{ 
  TServerMethods1Client *Temp; 
  Temp = new TServerMethods1Client( 
    SQLConnection1->DBXConnection); 
  try 
  { 
    Label1->Text = Temp->EchoString(Edit1->Text); 
  } 
  __finally 
  { 
    delete Temp; 
  } 
} 
//-------------------------------------------------------------- 
void __fastcall TCppDataSnapClientForm::ReverseStringButtonClick( 
    TObject *Sender) 
 
{ 
  TServerMethods1Client *Temp; 
  Temp = new TServerMethods1Client( 
    SQLConnection1->DBXConnection); 
  try 
  { 
    Label1->Text = Temp->ReverseString(Edit1->Text); 
  } 
  __finally 
  { 
    delete Temp; 
  } 
} 
//-------------------------------------------------------------- 

 

Finally, build and run the client application.  

 

If you  get an error  message at runtime containing the text, 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 25 

 
 

This can happen if your  SQLConnection Connected property is not  set to True.  Make sure the 

SQLConnection’s Connected property is set to True before running the DataSnap client application.   A 

refinement to the client application would be to add a third button  to turn  on and off the 

SQLConnection’s Connected property.   Another way would be  to, on  FormCreate, make sure the 

Connected property is True and on  FormDestroy to set the Connected property to  False. 

 

You might  also get an error when you load your  project group,  with the DataSnap client project 

activated, with the SQLConnection Connected property set to True  and without the DataSnap server 

application already running: 

 

 
 

There is nothing to worry about if you  get this error.  The form designer is trying to talk with the 

DataSnap Server at design time and can’t find it running on  port  211.  Click OK, start your DataSnap 

server application and re-activate the DataSnap client application. 

 

One final error you  might see when you try to run  a DataSnap server is “ Address and port already in 

use.” 

 

 
 

This error can occur in at runtime or  at project design time if two DataSnap servers are trying to use the 

same port number.  To  fix the problem shut down the DataSnap servers or if you need both  running 

make sure they are both using different ports.  

 

If the DataSnap Client application successfully connects to the DataSnap server, the client form is 

displayed. Enter some text in the edit box and click the Echo String and Reverse String buttons.  The 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 26 

event handlers will call the DataSnap server methods and set the Text propert y of the TLabel to the 

string that is returned. 

 

     
 

To run  the DataSnap client on Mac OS X  you’ll need to:  

 

 Add a Target Platform node for OS X and  make it the active platform.  

 Set the SQLConnection’s Params property HostName  value to the computer name or IP  address 
where your DataSnap server is running (the default HostName value is “localhost”, on my 

Windows 7 guest OS under VMWare Fusion for  the Mac the IP address  192.168.xx.xxx). 

 If you  want to control the Server and Client apps from the RAD Studio  IDE, make sure your  

PAServer is running on  the Mac. 

 

Run the DataSnap client application.  The IDE will deploy the DataSnap client application to the Mac 

using your remote profile settings.  On  the Mac, enter some text in the edit box and click the button s to 

call the DataSnap server methods. 

 

 
 

You can mix and  match DataSnap clients and servers using Delphi and C++.  You can mix  and match 

Console applications, FireMonkey applications and VCL applications as well. 

 

Before terminating the server application, make sure to close all the SQL connections. In this example, 

set the Connected property of the TSQLConnection component in  the client to False. DataSnap does not 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 27 

warn you about pending connections, so even if the server seems to close, it does not close  until there 

are no connections to it. Closing all the client applications does not solve this problem either, because 

the Delphi IDE can automatically open a connection to the server and browse for the exposed classes 

and methods. 

 

You will find  another s imple DataSnap server and client tutorial in the Embarcadero DocWiki at  

http://docwiki.embarcadero.com/RADStudio/en/Tutorial:_Using_a_DataSnap_Server_with_an_Applicat

ion.  This tutorial shows you how to create a DataSnap server method and DataSnap client application 

that sums two numbers.  Pawel Glowacki, in his Delphi Labs for DataSnap episode 1, shows you how to 

create a simple DataSnap calculator server and client using Delphi.  You’ll find the article at 

http://edn.embarcadero.com/article/41176.  You  can download the project source code at 

http://cc.embarcadero.com/item/28184. 

 

Creating a Windows and Mac Multi-Tier Database Application 

 

Next, we will create a DataSnap based Multi-Client, Multi-Platform, Multi-Tier database application. The 

application will include: 

 

 FireMonkey based DataSnap server that uses an InterBase database 

 FireMonkey DataSnap client that provides the user interface for the database operations and 

can run on Windows and Mac. 

 

The DataSnap client becomes a thin client which only needs the DataSnap connection to access the 

database.   The DataSnap server has the database drivers and business logic to work with a local or 

remote database. 

 

The DataSnap server application will only (currently) run on  Windows using either Delphi or C++.  You  

can build DataSnap client applica tions that run on Windows and Mac using Delphi and C++.  With RAD 

Studio you can also build DataSnap client applications for RadPHP, JavaScript and using the DataSnap 

Mobile Connectors we support iOS (Objective -C and Delphi), Android (Java), Blackberry (Java), and 

Windows Phone (C#).   The DataSnap client application does not need to be implemented in the same 

language as the DataSnap server. 

 

Use the following steps to create the DataSnap server and client.  Remember to do  a File > Save All 

(shift-control-s) at the end of each step. 

Step 1: Create a new FireMonkey DataSnap Server Project. 

 

For Delphi, choose File > New > FireMonkey HD Application  – Delphi  to create a new Delphi project. 

For C++,  choose File > New > FireMonke y HD Application - C++Builder  to create a new C++Builder 

project. 

 

Set the form's Caption property to "Delphi DB DataSnap Server Application" or “C++ DB DataSnap Server 

Application”. Click File > Save All  to save the project. 

 

http://docwiki.embarcadero.com/RADStudio/en/Tutorial:_Using_a_DataSnap_Server_with_an_Application
http://docwiki.embarcadero.com/RADStudio/en/Tutorial:_Using_a_DataSnap_Server_with_an_Application
http://edn.embarcadero.com/article/41176
http://cc.embarcadero.com/item/28184


E-Learning Series: Getting Started with Windows and Mac Development 

Page 28 

For Delphi, save the unit file as DelphiDBServerUnit.pas and save the project as 

DelphiDBDataSnapServer.dproj.  For C++, save the file as  CppDBServerUnit.cpp and save the project as  

CppDBDataSnapServer.cbproj. 

 

Step 2: Add the DataSnap Server components 

 

Drag the following components from the Datasnap Server category of the  Tool Palette onto the form:  

 

 TDSServer  

 TDSServerClass 

 TDSTCPServerTransport 
 

Click File > Save All  to save the project. 

 

Your server form should now look like this: 

 

     
 

Step 3 – link the DataSnap server components together 

 

Using the Object Inspector do the following to link the three DataSnap server components together: 

 

Select the TDSServerClass component on the form. On the drop-down menu, set its  Server property to  

the name of your  TDSServer component, DSServer1 in this example. 

 

Select the TDSTCPServerTransport component on the form. On the  drop-down menu, set its  Server 

property to the name of your  TDSServer component, DSServer1 in this example. 

 

Click File > Save All  to save the project. 

 

Step 4 – Add a ServerModule to your project 

 

file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.DSServer.TDSServer.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.DSServer.TDSServerClass.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.DSTCPServerTransport.TDSTCPServerTransport.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.DSServer.TDSServerClass.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.DSServer.TDSServer.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.DSTCPServerTransport.TDSTCPServerTransport.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.DSServer.TDSServer.html


E-Learning Series: Getting Started with Windows and Mac Development 

Page 29 

Use File > New > Other…  to bring up  the “New Items” object gallery.  You  can also click on the “New 

Items” speed button on the tool bar (the page icon with a green + sign on  it).  

 

For a Delphi DataSnap Server, add a new Delphi file called a Server Module by clicking the tab Delphi  

Projects > DataSnap Server.  

 

 
 

Select Server Module and click OK. After you click OK  you  will see the following warning dialog:  

 

 
 

Since the Server Module can work with  VCL, FireMonkey and common compon ents, the IDE will display 

this warning as a reminder to limit your use to FireMonkey and common components.  Just click the Yes 

button to continue. 

 

Using the Object Inspector set the ClassGroup  property to  FMX.Types.TControl. 

 

The Server Module wizard will create a Server Module form and class Server Module class declaration.  

We’ll be adding database access components in the form and additional public methods in the server 

class in the next step.  The generated Delphi server module class declaration is: 

 
  TDSServerModule1 = class(TDSServerModule) 
  private 
    { Private declarations } 
  public 
    { Public declarations } 
  end; 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 30 

Save the module as DelphiServerModule.pas. 

 

 

For a C++ DataSnap Server, add a new C++ file called a  Server Module by clicking the tab C++Builder 

Projects > DataSnap Server. 

 

 
 

Select Server Module and click OK.  After you  click OK  you will see the following warning dialog:  

 

 
 

Since the Server Module can work with  VCL, FireMonkey and common components, the IDE will display 

this warning as a reminder to limit your use to FireMonkey and common components.  Just click the Yes 

button to continue. 

 

Using the Object Inspector set the ClassGroup  property to  FMX.Types.TControl. 

 

The Server Module wizard will create a Server Module form and a Server Module class declaration.  

We’ll be adding database access components in the form and additional public methods in the server 

class in the next step.  The generated C++ server module class declaration is: 

 
class TDSServerModule1 : public TDSServerModule 
{ 
__published: // IDE-managed Components 
private:  // User declarations 
public:  // User declarations 
    __fastcall TDSServerModule1(TComponent* Owner);  
}; 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 31 

 

Save the module as CppServerModuleUnit.cpp. 

 

For both Delphi and C++ DataSnap servers, the TDSServerModule class inherits from 

TDSServerModuleBase which inherits from TProviderDataModule which inherits from TDataModule.  

You can add various database controls  to the Server Module. You can also add public methods to your 

Server Module using the Code Editor.  

 

Data modules are initially framework-neutral. In order to use framework-specific library elements, you 

need to set the platform affinity by selecting a framework-specific value for the ClassGroup pseudo-

property: 

 

 System.Classes.TPersistent, the default setting, indicates framework neutrality and includes only 
RTL elements that are not framework-specific. 

 Vcl.Controls.TControl - sets the VCL framework, including RTL  elements that are not framework-

specific.  

 FMX.Types.TControl - sets the FMX framework, including RTL elements that are not framework-

specific.  

 FMX _Types.TControl - sets the FMX iOS framework, including RTL elements that are not 
framework-specific.  

 

Click File > Save All  to save the project. 

 

Step 5 – Add Database Components to your DataSnap Server Project 

 

You can add components to a  project by dragging items from the  Data Explorer. In the Project Manager 

view, click the Data Explorer tab. I f the INTERBASE item in the  tree view isn't expanded, click the plus 

sign to expand it. Under INTERBASE,  open the EMPLOYEE entry  and then expand the Tables item. Drag 

the EMPLOYEE table to the DelphiServerModuleUnit form or CppServerModuleUnit form, which results 

in two new dbExpress components being added to the form:  

 

 A TSQLConnection component. Using the Object Inspector, set its Name property to 

"EMPLOYEE_CONNECTION".  

 A TSQLDataSet component. Using the Object Inspector, change its Name property to 
"EMPLOYEE_TABL E".  

 

When you dragged the table to the form, the two components were automatically connected. When 

you set the Name property of the TSQLConnection component, you’ll notice that the SQLConnection 

property of EMPLOYEE_TABLE was changed to the EMPLOYEE_CONNECTION.  

 

Place two additional components on the DelphiServerModuleUnit form or  CppServerModuleUnit form: 

 

 Add a TDataSetProvider.  Using the Object Inspector, set its DataSet property to 

EMPL OYEE_TABLE on the drop -down menu.  Change its name to ServerDataSetProvider1 to 

distinguish it from another TDataSetProvider that will be added later. 

file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Data.SqlExpr.TSQLConnection.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Data.SqlExpr.TSQLDataSet.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.Provider.TDataSetProvider.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Datasnap.Provider.TDataSetProvider.html


E-Learning Series: Getting Started with Windows and Mac Development 

Page 32 

 Add a TSQLStoredProc component. Set its SQLConnection property to 

"EMPLOYEE_CONNECTION" using the property’s  drop-down menu. Set its StoredProcName 

property to "GET_EMP _PROJ" using the property’s  drop -down menu. "GET_EMP_P ROJ" is one 

of the stored procedures in the Employee database. This stored procedure obtains a project ID 

associated with an employee number. 

 

Click File > Save All  to save the project. 

 

The Server Module for Delphi or C++ projects should look like the figure below. 
 

 
 

Step 6- Add Functions to Your Server Module 

 

Add any functions to your  Server Module that you  want to expose as  public.  Any server methods in the 

public section of your  Server Module may be  called by a DataSnap client application that is connected to 

it. 

 

For Delphi: with the DelphiServerModuleUnit selected, c lick the Code tab. In the type section for the 

ServerModule under the public section, add this function declaration: 

 
function callStoredProcedure (mylocalkey : Integer) : String; 

 

Use class completion by pressing CTRL-SHIFT-C  to create a stub for this function in the  implementation 

section. 

 

For C++:  with the CppServerModuleUnit selected, c lick the CppServerModuleUnit.h tab to display the 

header file. Add the following function under public: 

 
String _fastcall callStoredProcedure (int mylocalkey); 

 

After adding the  database components and the public method, the Delphi and C++ Server Module 

classes are now declared as 

 
// Delphi 
TDSServerModule1 = class(TDSServerModule) 
  EMPLOYEE_CONNECTION: TSQLConnection; 
  EMPLOYEE_TABLE: TSQLDataSet; 
  ServerDataSetProvider1: TDataSetProvider; 
  SQLStoredProc1: TSQLStoredProc; 

file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Data.SqlExpr.TSQLStoredProc.html
file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\rad_xe2_en\Code_Insight_(IDE_Tutorial).html%23Class_Completion_.E2.80.94_CTRL.2BSHIFT.2BC


E-Learning Series: Getting Started with Windows and Mac Development 

Page 33 

private 
  { Private declarations } 
public 
  { Public declarations } 
  function callStoredProcedure (mylocalkey : Integer) : String; 
end; 

 
// C++ 
class TDSServerModule1 : public TDSServerModule 
{ 
__published: // IDE-managed Components 
  TSQLConnection *EMPLOYEE_CONNECTION; 
  TSQLDataSet *EMPLOYEE_TABLE; 
  TDataSetProvider *ServerDataSetProvider1; 
  TSQLStoredProc *SQLStoredProc1; 
private:  // User declarations 
public:  // User declarations 
  String _fastcall callStoredProcedure (int mylocalkey); 
  __fastcall TDSServerModule1(TComponent* Owner);  
}; 

 

Click File > Save All  to save the project. 

 

Step 7 - Write the Server Side Code for the Function You Just Added. 

 

The callStoredProcedure function calls a stored procedure with an integer parameter employee number 

(EMP_NO). The function obtains an AnsiString project ID (PROJ_ID). The function sets the input 

parameter, executes the procedure, then retrieves the output parameter. The function parallels the 

function that will be written in the client in terms of parameters. We have already set the value of the  

StoredProcName property of the  TSQLStoredProc component to  the stored procedure name, 

"GET_EMP _PROJ ".  

 

For Delphi, add the following function to the DelphiServerModuleUnit.pas: 

 
function TDSServerModule1.callStoredProcedure( 
    mylocalkey: Integer): String; 
var 
  myString : String; 
begin 
  SQLStoredProc1.ParamByName('EMP_NO').AsInteger := mylocalkey; 
  SQLStoredProc1.ExecProc; 
  myString := SQLStoredProc1.ParamByName('PROJ_ID').AsString; 
  result := myString; 
end; 

 

For C++,  add the following function after the other  member functions in CppServerModuleUnit.cpp: 

 
String _fastcall TDSServerModule1::callStoredProcedure ( 
    int mylocalkey) { 
  String myString; 
  SQLStoredProc1->ParamByName("EMP_NO")->AsInteger = mylocalkey; 
  SQLStoredProc1->ExecProc(); 
  myString = SQLStoredProc1->ParamByName("PROJ_ID")->AsString; 

file:///C:\Users\embt\Desktop\Getting%20Started%20Stuff\Wiki\Wiki\libraries\Data.SqlExpr.TSQLStoredProc.html


E-Learning Series: Getting Started with Windows and Mac Development 

Page 34 

  return myString; 
} 

 

Note that since the actual stored procedure parameter names, EMP_NO and PROJ_ID, are used, their 

ordinal value is obtained by ParamByName. 

 

Step 8 – Add the OnGetClass Event Handler for the DataSnap Server Class 

 

Go back to DelphiDBServerUnit form or  CppDBServerUnit form.   Select the TDSServerClass component. 

In the Object Inspector for the  TDSServerClass component, click the Events tab and double-click on the 

OnGetClass event. This event handler code determines which server class the DataSnap server uses: 

 
// Delphi 
procedure TForm1.DSServerClass1GetClass( 
    DSServerClass: TDSServerClass; 
    var PersistentClass: TPersistentClass); 
begin 
  PersistentClass := TDSServerModule1; 
end; 
 
// C++ 
void __fastcall TForm1::DSServerClass1GetClass( 
    TDSServerClass *DSServerClass, 
    TPersistentClass &PersistentClass) { 
  PersistentClass = __classid(TDSServerModule1); 
} 

 

Note that the variable PersistentClass is assigned to a class reference—not an object reference. 

 

Provide the linkage needed in ServerForm to the ServerModule. 

 

For Delphi, go to  the uses section of the ServerForm unit  and add DelphiServerModuleUnit, so that 

TDSServerModule1 is recognized. (You  can also use File > Use  Unit ).  

 

For C++,  add this line after the other includes in CppDBServerUnit.cpp: 

 
#include "CppServerModuleUnit.h" 

 

Save the unit. Build the server project (Project > Build or  Shift-F9) and  fix any errors, but do not  run the 

server at this time. 

 

Click on the Project Manager view in RAD Studio. Save the project group by right-clicking the project 

group and clicking Save Project Group.  Save the project group as DataSnapDBApplication.groupproj. In 

the next section we will add another project to this project group.  

 

This completes the server, which does two things: 

 

 Provide database data that can be updated 

 Execute a stored procedure and return a value 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 35 

 

Next, you will create a DataSnap client that uses the server. The client exercises both functions of the 

server: 

 

 Call a stored procedure and return a value. 

 Display and update data in a database table. 
 

Click File > Save All  to save the project and project group. 

 

Step 9 – Create the Client Application Project 

 

To create the client application in the same project group as the server application, right -click the name 

of the project group in the Project Manager and select Add New Project or choose Project > Add New 

Project.  The New Items dialog box will appears. 

 

For Delphi, select the Delphi Projects category, then select FireMonkey HD Application.  For  C++Builder, 

select the C++Builder Projects  category, then select FireMonkey HD Application.  

 

Click OK. Select the new form and set its  Caption property to “Delphi DB DataSnap Client Application” or 

“C++ DB DataSnap Client Application” in the Object Inspector.  

 

Choose File > Save All to  save the files: 

 

For Delphi, save the unit as  DelphiDBClientUnit.pas. Save the project as  DelphiDBDataSnapClient.dproj.  

For C++,  save the unit as  CppDBClientUnit.cpp. Save the project as  CppDBDataSnapClient.cbproj. 

 

Double-click the CppDBDataSnapServer.cbproj.exe in the Project Manager view (to  activate that project 

node). Choose Run > Run Without  Debugging  (or  hit Shift -Control-F9 ) to  run the DataSnap server 

application.  You can minimize the server application Form that appears. 

 

Note: You  need to have the server running to be able to connect to  the server and gener ate the 

DataSnap client classes in the next step. 

 

Click File > Save All  to save the project and project group. 

 

Step 10 – Connect the DataSnap Client to the DataSnap Server 

 

Place a TSQLConnection component on the new form and set its properties  using the Object Inspector: 

 

 Set the Driver property to "DataSnap". In Object Inspector, clicking on the + sign on the  left of 

the Driver property to display (and allow you to  set) Driver sub-properties: 

o Set Port to "211" (default). 

o Set HostName to "localhost" (default).  Use localhost for testing the DataSnap server 

and client on the same machine.  When you  put the DataSnap server on a different 

http://docwiki.embarcadero.com/VCL/XE2/en/SqlExpr.TSQLConnection


E-Learning Series: Getting Started with Windows and Mac Development 

Page 36 

machine, then you will need to change the client’s TSQLConnection HostName to the 

computer name or TCP /IP address where the DataSnap server is running.  

o These properties (and others) can also be set by changing the Params property. Click on 

the ellipsis (...) button in  the Params property to display the Value List Editor. You can 

enter property values in this dialog and then click OK to set the values. 

 Set the LoginPrompt property to  false to prevent the user name and password dialog appearing 

every time the client connects to the server 

 Set the Connected property to true  
 

While the DataSnap server is running, right-mouse click on the TSQLConnection and select  “Generate 

DataSnap client cl asses” from the context menu. This action creates a new unit  with code that supports 

connecting and using the functions of your DataSnap server.   For Delphi, save the generated unit as 

DelphiDBClientClasses.pas.  For C++, save the generated unit as CppDBClientClasses.cpp. 

 

Link the Delphi or C++ client classes  unit to DataSnap DB client unit. 

 

For Delphi, click on the DelphiDBClientUnit tab, click its Code tab, and then add DelphiDBClientClasses to 

the DelphiDBClientUnit’s uses clause (or use File > Use Unit).  

 

For C++,  click on the CppDBClientUnit.cpp tab at the top of the  Code Editor, then click on the Code  tab at 

the bottom of the Code Editor. Add the following include after the other includes in  

CppDBClientUnit.cpp: 

 
#include "CppDBClientClasses.h" 

 

Click File > Save All  to save the project and project group. 

 

Step 11 – Start Building the DataSnap Client Application User Interface 

 

Next we’ll start building the DataSnap Client Application’s user interface. In the DelphiDBClientUnit 

form, click the Design tab and drag components from the Tool Palette onto the form: 

 

 A TBindNavigator control to navigate through the database. 

 A TStringGrid control to  view a database table. 

 A TCheckBox control to  open/close the DataSnap server connection and activate/deactivate the 
ClientDataSet. 

 Two TButtons to update any changed database data and call the stored procedure. Set the 

corresponding TButton's Text  properties to "Apply updates" and "Get project".   Also change 

each associated TButton’s Name property to “ApplyUpdatesButton” and “GetProjectButton”. 

 A TEdit control for  the employee number. 

 A TLabel control to show the project ID. 

 

After you  have placed the components, move and resize them as needed.   Your  DataSnap client form 

should look something like the following: 

 

http://docwiki.embarcadero.com/VCL/XE2/en/DBCtrls.TDBNavigator
http://docwiki.embarcadero.com/VCL/XE2/en/DBGrids.TDBGrid
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TButton
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TButton
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TEdit
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TLabel


E-Learning Series: Getting Started with Windows and Mac Development 

Page 37 

     
 

Step 12- Add Client Side Database Components 

 

In this step you will add the database components and code that will connect your DataSnap client 

application to the database operations in your DataSnap server.   Make sure that your DataSnap server is 

running. 

 

Use IDE Insight or  the Tool  Palette, place a TSQLServerMethod component on  the form.   Set its 

SQLConnection property to "SQLConnection1" using the Object Inspector. 
 

Set TSQLServerMethod’s ServerMethodName property  using the Object Inspector. When the DataSnap 

server is running, you can use the property's drop-down menu to see all the server methods available  in 

your DataSnap server.  The list will include DataSnap administration, metadata and server module 

methods.  Select the "TDSServerModule1.callStoredProcedure", which is the function you previously 

created in the DataSnap server that calls the InterBase Employee database’s “Get_EMP _PROJ” stored 

procedure. 

 

 

http://docwiki.embarcadero.com/VCL/XE2/en/SqlExpr.TSqlServerMethod


E-Learning Series: Getting Started with Windows and Mac Development 

Page 38 

 

Do not set TSQLServerMethods’s Active property to true. If you  do, you  get  an error message, because 

the “Get_EMP_P ROJ” stored procedure does not return a dataset, it just returns the project name 

string.  We will use code to call the method and put the returned string in the TLabel’s Text property.  

 

Add a TDSProviderConnection component onto the form.   This provider component gives us the abi lity 

to freely navigate and resolve database updates  with the DataSnap server.  Set the SQLConnection 

property to "SQLConnection1".  Set the ServerClassName property to the name of your  DataSnap 

server’s Server Module class name, which in our example is "TDSServerModule1". 

 

Add a TClientDataSet onto the form.   Set the ProviderName property to  "DataSetProvider1" from the  

drop-down menu.  Set the RemoteServer property to  "DSProviderConnection1" from the drop-down 

menu.  Set the ProviderName property to "ServerDataSetProvider1" from the drop -down menu. 

 

Add a “ TDataSource” component to the form and set its “DataSet” property to “ClientDataSet1”. 

 

Right mouse-click on the TStringGrid on  the form and choose “Link to  DB DataSource” from the context 

pop-up menu.   Select DataSource1 from the “select a data source” list and click the OK  button.  

 

 
 

Two additional components will appear on your client form:  

 

 BindScopeDB - Non -visual component that provides a way to make data contained by the 
specified data source available to all components that want to access it, using LiveBindings. 

 BindingsList -  Non-visual component that contains all of the LiveBindings expressions, 

methods and output converters. 

 

Select the BindDBNavigator component on the form.  Set its BindScope property to  “BindScopeDB1” 

from the drop  down list in the Object Inspector. 

 

http://docwiki.embarcadero.com/VCL/XE2/en/DSConnect.TDSProviderConnection
http://docwiki.embarcadero.com/VCL/XE2/en/DBClient.TClientDataSet


E-Learning Series: Getting Started with Windows and Mac Development 

Page 39 

Set the ClientDataSet’s Active property to True.  You  will see live employee data in the TStringGrid.  The  

data and metadata is coming via the DataSnap connection to your DataSnap server which is getting the 

data and metadata from the InterBase database. 

 

Set ClientDataSet's Active property back to False. The client application will toggle the ClientDataSet’s 

Active property using the CheckBox’s  OnChange event handler that we add in the next step. 

 

After you’ve added the client side DataSnap access and ClientDataSet components and set the 

properties your DataSnap client, your form should look something like the following: 

 

     
 

Step 13 – Add Event Handlers for the CheckBox and Apply Updates button 

 

First add the OnChange event handler for the  Connect to Server  Checkbox. Select Checkbox and in the 

Events tab of the  Object Inspector, double-click the OnChange event to generate the skeleton code. Add 

the following code which will open/close the DataSnap server connection and activate/deactivate the 

ClientDataSet: 

 
// Delphi 
procedure TForm1.CheckBox1Change(Sender: TObject); 
begin 
  // if Connect to Server is checked then 
  //   open the DataSnap server connection 
  //   activate the ClientDataSet 
  if CheckBox1.IsChecked then begin 
    SQLConnection1.Connected := True; 
    ClientDataSet1.Active := True 
  end 
  // if Connect to Server is not checked then 
  //   deactivate the ClientDataSet 
  //   close the DataSnap server connection 
  else begin 
    ClientDataSet1.Active := False; 
    SQLConnection1.Connected := False 
  end; 
end; 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 40 

 
// C++ 
void __fastcall TForm1::CheckBox1Change(TObject *Sender) 
{ 
  // if Connect to Server is checked then 
  //   open the DataSnap server connection 
  //   activate the ClientDataSet 
  if (CheckBox1->IsChecked) { 
    SQLConnection1->Connected = True; 
    ClientDataSet1->Active = True; 
  } 
  // if Connect to Server is not checked then 
  //   deactivate the ClientDataSet 
  //   close the DataSnap server connection 
  else { 
    ClientDataSet1->Active = False; 
    SQLConnection1->Connected = False; 
  } 
} 

 

Add the OnClick event handler for  the "Apply updates" TButton. Create the skeleton for the event 

handler as above and add this code: 

 
// Delphi 
procedure TForm1.ApplyUpdatesButtonClick(Sender: TObject); 
begin 
  ClientDataSet1.ApplyUpdates(0); 
end; 
 
// C++ 
void __fastcall TForm1:: ApplyUpdatesButtonClick(TObject *Sender) 
{ 
  ClientDataSet1->ApplyUpdates(0); 
} 

 

As you  are making changes to the data in the StringGrid, the changes are being stored in the 

ClientDataSet’s Delta public (not published) property.  Delta contains only information about those 

records inserted, modified, or deleted through the client.   When the client dataset is linked to a 

provider, Delta is passed as an argument to the ApplyUpdates and Reconcile methods, which use the 

information in the change log to update the database. On return from succes sful application of updates, 

Delta is cleared. 

 

ApplyUpdates takes a single parameter, MaxErrors, which indicates the maximum number of errors that 

the provider should tolerate before aborting the update process. If MaxErrors is 0, then as soon as an 

update error occurs, the entire update process is terminated. No changes are written to the database, 

and the client dataset's change log remains intact. If MaxErrors is -1, any number of errors is tolerated, 

and the change log contains all records that could not be successfully applied. If MaxErrors is a positive 

value, and more errors occur than are permitted by MaxErrors, all updates are aborted. If fewer errors 

occur than specified by MaxErrors, all records successfully applied are automatically cleared from  the 

client dataset's change log. 
 

http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TButton
http://docwiki.embarcadero.com/Libraries/en/Datasnap.DBClient.TCustomClientDataSet.ApplyUpdates
http://docwiki.embarcadero.com/Libraries/en/Datasnap.DBClient.TCustomClientDataSet.Reconcile


E-Learning Series: Getting Started with Windows and Mac Development 

Page 41 

ApplyUpdates returns the number of actual errors encountered, which is always less than or equal to  

MaxErrors plus one. This return value indicates the number of records that could not be written to the  

database. 

 

The client dataset's ApplyUpdates method does the following: 

 

 It indirectly calls the provider's  ApplyUpdates method (in this case via TCP/IP from the  DataSnap 

client to the DataSnap server). The provider's ApplyUpdates method writes the updates to the 

database and attempts to correct any errors it encounters. Records that it cannot apply because 
of error conditions are sent back to the client dataset. 

 The client dataset 's  ApplyUpdates method then attempts to reconcile these problem records by 

calling the Reconcile method. Reconcile is an error-handling routine that calls the 

OnReconcileError event handler. You must code the OnReconcileError event handler to correct 

errors. 

 Finally, Reconcile removes successfully applied changes from the change log and updates  Data 

to reflect the newly updated records. When Reconcile completes, ApplyUpdates reports the 

number of errors that occurred. 

 

There are two events that let you handle errors that occur during the update process  on the DataSnap 

server side and DataSnap client side: 

 

 On the DataSnap server side: During the update process, the dataset provider generates an 
OnUpdateError event every time it encounters an update that it can't handle. If you  correct the 

problem in an OnUpdateError  event handler, then the error does not count toward the 

maximum number of errors passed to the ApplyUpdates method.  

 On the DataSnap client side: After the entire update operation is finished, the client dataset 

generates an OnReconcileError event for every record that the provider could not  apply to the 

database server. 

 

In this “getting started” tutorial, I do not deal with errors and the ApplyUpdates parameter is set to 0  in 

the above event handler.  In your real world applications you should always code an OnReconcileError 

or OnUpdateError event handler, even if only to  discard the records returned that could not be applied. 

The event handlers for these two events work the  same way. They include the following parameters: 

 

 DataSet: A client dataset that contains the updated record which couldn't be applied. You can 
use this dataset's methods to get information about the problem reco rd and to edit the record  

in order to correct any problems. In particular, you will want to use the  CurValue, OldValue, and 

NewValue properties of the fields in the current record to determine the cause of the update 

problem. However, you must not  call any client dataset methods that change the current record 

in your event handler. 

 E: An object that represents the problem that occurred. You can use this excepti on to extract an 

error message or to determine the cause of the update error.  

 UpdateKind: The type of update that generated the error.  UpdateKind can be ukModify  (the  
problem occurred updating an existing record that was modified),  ukInsert (the problem 

occurred inserting a new record), or  ukDelete (the problem occurred deleting an existing 

record). 

http://docwiki.embarcadero.com/Libraries/en/Datasnap.Provider.TCustomProvider.ApplyUpdates
http://docwiki.embarcadero.com/Libraries/en/Datasnap.DBClient.TCustomClientDataSet.Reconcile
http://docwiki.embarcadero.com/Libraries/en/Datasnap.DBClient.TCustomClientDataSet.OnReconcileError
http://docwiki.embarcadero.com/Libraries/en/Datasnap.DBClient.TCustomClientDataSet.Data
http://docwiki.embarcadero.com/Libraries/en/Data.DB.TField.CurValue
http://docwiki.embarcadero.com/Libraries/en/Data.DB.TField.OldValue
http://docwiki.embarcadero.com/Libraries/en/Data.DB.TField.NewValue


E-Learning Series: Getting Started with Windows and Mac Development 

Page 42 

 Action: A parameter that indicates what action to take when the event handler exits. In your 

event handler, you set this parameter to 

o Skip this record, leaving it in the change log. (rrSkip or  raSkip)  

o Stop the entire reconcile operation. (rrAbort or  raAbort)  

o Merge the modi fication that failed into the corresponding record from the  server. 

(rrMerge  or ra Merge) This only works if the server record does not  include any changes 

to fields modified in the client dataset's record. 

o Replace the current update in the change log with the value of the record in  the event 

handler, which has presumably been corrected. (rrApply or  raCorrect) 
o Ignore the error completely. (rrIgnore) This possibility only exists in the OnUpdateError 

event handler, and is intended for the case where the event handler applies the update 

back to the database server. The updated record is removed from the  change log and 

merged into Data, as if the provider had applied the update. 

o Back out the changes for  this record on the client dataset, reverting to the originally 

provided values. (raCancel) This possibility only exists in the  OnReconcileError event 

handler. 

o Update the current record value to match the  record on the server. (raRefresh) This 

possibility only exists in the OnReconcileError event handler. 

 

For more information about ClientDataSet, you should check out Cary Jensen’s excellent book, “Delphi 

in Depth: ClientDataSets” - http://www.jensendatasystems.com/cdsbook/.  You  can also watch (or 

download) Cary Jensen’s series of blog posts about ClientDataSet at 

http://caryjensen.blogspot.com/search?q=clientdataset 

 

Step 14 – Add Button Event Handler Code for the Stored Procedure Call 

 

This step will show you how to create TButton event handler that will use the TEdit box  and GetProject 

TButton to  take an employee’s number and make a  DataSnap server method call that will execute the 

InterBase database’s GET_EMP_P ROJ stored procedure and return the Project  ID and  display it in the 

TLabel’s Text property. 

 

Create an event handler skeleton for the "Get Project" TButton 's OnClick event. Clicking this  TButton 

results in calling the method we defined on  the server. Since the stored procedure takes an integer 

value, we need to convert the text in the employee number TEdit to  an integer, call the server method 

which will in turn call use the database stored procedure to return the Project ID string. Here is the 

event handler code: 

 
// Delphi 
procedure TForm1.GetProjectButtonClick(Sender: TObject); 
var 
  mykey : Integer; //variable to hold text from edit box 
  myServer : TDSServerModule1Client;  //server proxy we will call 
  projectIDString : string;   // returned from stored proc 
begin 
  // If DataSnap server is connected call the remote method 
  if SQLConnection1.Connected then begin 
    mykey := StrToInt(Edit1.Text);  //conversion to integer 
    // Server creation using the SQLConnection for communication 

http://www.jensendatasystems.com/cdsbook/
http://caryjensen.blogspot.com/search?q=clientdataset
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TButton
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TButton
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TEdit


E-Learning Series: Getting Started with Windows and Mac Development 

Page 43 

    myServer := TDSServerModule1Client.Create( 
      SQLConnection1.DBXConnection); 
    try 
      // Calling method that calls stored procedure with the key 
      // Save value returned from stored procedure 
      projectIDString := myServer.callStoredProcedure(mykey); 
      // if returned string is empty then display no projectID 
      if projectIDString = '' then 
        Label1.Text := '* NoProjID *' 
      else 
        Label1.Text := projectIDString 
    finally 
      myServer.Free  //free up the server 
    end 
  end 
end; 
 
// C++ 
void __fastcall TForm1::GetProjectButtonClick(TObject *Sender) 
{ 
  // If DataSnap server is connected call the remote method 
  if (SQLConnection1->Connected) { 
    int mykey; //variable to hold text from edit box 
    String projectIDString;   // returned from stored proc 
    TDSServerModule1Client *myServer;  //server proxy we’ll call 
    mykey = StrToInt(Edit1->Text);  //conversion to integer 
    // Server creation using the SQLConnection 
    myServer = new TDSServerModule1Client( 
      SQLConnection1->DBXConnection); 
    try { 
      // Calling method that calls the stored proc with the key. 
      // Save value returned from stored procedure. 
      projectIDString = myServer->callStoredProcedure(mykey); 
      // if returned string is empty then display “* noProjID *” 
      if (projectIDString == "") 
        Label1->Text = "* NoProjID *"; 
      else 
        Label1->Text = projectIDString; 
    } 
    __finally { 
      delete myServer;  //free up the server 
    } 
  } 
} 

 

Notice that the preceding code sets the  Text property of the TLabel to the value returned from calling 

the stored procedure: the project ID.  If the stored procedure doesn’t find a project ID for  the employee 

(null string), then display “* NoProjID  *”  text in the TLabel’s Text property.  

 

Select File > Save All to  save all the modified source files, projects and the project group. 

 

Step 15 – Build and Run the Windows DataSnap Client Application 

 

http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TLabel


E-Learning Series: Getting Started with Windows and Mac Development 

Page 44 

You are now ready to build and run  the Windows client side of the project.  Build the client project by 

right-clicking DelphiDBDataSnapClient or CppDBDataSnapClient in the Project Manager view and select 

Build. Fix any errors you find. 

 

Run the client application.  Click the "Connect to Server” CheckBox, which  

 

 If checked, connects to the DataSnap server and activates the ClientDataSet 

 If unchecked deactivates the ClientDataSet and disconnects from the DataSnap server . 
 

The TStringGrid gets populated with entries from the EMPL OYEE table. The TBindNavigator control is 

also active, allowing you to navigate through the  table entries. 

 

You can select a cell in the TStringGrid and change its value. Click the "Apply Updates" TButton and 

database table will be updated with any changes you make. 

 

Finally, test the stored procedure. Enter one of the  valid employee numbers in the  TEdit control and 

click the "Get project" TButton. The text of the label should change to the appropriate project ID from 

the EMPLOYEE_PROJECT table, if one exists, otherwise it will display “* No ProjectID *” :  

 

The following client application form should appear as follows if the CheckBox is checked and you’ve  

tested the stored procedure: 

 

     
 

Step 16 – Build and Run the Mac DataSnap Client Application 

 

As I mentioned earlier, you can create a Mac version of your  DataSnap client application. 
 

In the Project Manager view, right mouse-click on the Target Platforms node for your DataSnap client 

and add “OS X”  as a target.  Also make sure you  have set up a remote profil e for the target platform.  

Also make sure the PAServer is running on your Mac (the IDE needs this running to be able to deploy the 

built application to the Mac).   You can also use these same steps to build and deploy your DataSnap 

client to remote Windows targets. 

 

http://docwiki.embarcadero.com/VCL/XE2/en/DBGrids.TDBGrid
http://docwiki.embarcadero.com/VCL/XE2/en/DBCtrls.TDBNavigator
http://docwiki.embarcadero.com/VCL/XE2/en/DBGrids.TDBGrid
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TButton
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TEdit
http://docwiki.embarcadero.com/VCL/XE2/en/StdCtrls.TButton


E-Learning Series: Getting Started with Windows and Mac Development 

Page 45 

 

You also need to change the “HostName” parameter for the SQLConnection component in the client  

from localhost to the computer network name or  TCP /IP address where you DataSnap server is running.  

Use the Object Inspector for the SQLConnection1 component and double click on the Params property 

to bring up  the Value List Editor.  You  can skip this step if you changed or  created a new DataSnap 

connection with the DataSnap dbExpress connection settings that already point to your DataSnap 

server.  In this case, we used the default DataSnap connection name so the default HostName is 

“localhost”.  Change the HostName value to Computer name or  TCP/IP address for your  setup.  

 

     
 

One final setting before you  can build and deploy your DataSnap client a pplication to the Mac, add the 

Midas Library Feature File to the deployment options for your client application project as the client 

uses ClientDataSet.  Use Project > Deployment  and click on the  Feature Files icon and select MIDAS 

library (Project Deployment is also covered in Lesson 3 – the IDE).  This will tell the IDE to  deploy the 

MIDAS.dylib along with your  Mac DataSnap client executable so that you can test the Mac version. 

 

 
 

Choose Run without Debugging (Shift-Control-F9) or Run  (F9) to compile and deploy the DataSnap client 

application to a Mac.  Test the client on your Mac to make sure it can work with the DataSnap server 

running on Windows.  The Mac DataSnap client application should work just like the Windows client 

worked. 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 46 

 

  [C++ app bitmap here] 
 

Congratulations!  You’ve build your  first Multi-Client, Multi-Platform, Multi-Tier DataSnap Database 

application for Windows and Mac!  

 

There is always more to do and more to  learn, especially with DataSnap multi-tier application 

development.  For example, I did not check to  see if there were any updates that should be applied if 

you’ve made changes and you un-check the CheckBox.  You can always call ApplyUpdates before 

deactivating the ClientDataSet and closing the DataSnap server connection.  Cal ling ApplyUpdates, when 

there are no updates to apply, will not try to send anything to the server, nor will it cause a runtime 

error. 

 

You can also build both Delphi and C++ DataSnap server applications and/or DataSnap client 

applications and since they have the same functionality, you can mix and match one server with a 

different client. 

 

As you  learn more, you can also build DataSnap client applications using RadPHP  -  and mobile client 

applications using the DataSnap mobile connector technology - 

http://docwiki.embarcadero.com/RADStudio/en/DataSnap_Connectors_for_Mobile_Devices . 

 

There are additional videos and articles about building DataSnap applications in cluding: 

 

 Delphi Labs: DataSnap XE - Multitier Database Application - 
http://edn.embarcadero.com/article/41189 

 DataSnap XE2 – New Features and Improvements - http://cc.embarcadero.com/Item/28542 

 REST and Mobile DataSnap Client Development - http://cc.embarcadero.com/Item/28543 

 Creating Pure REST Servers using DataSnap - http://cc.embarcadero.com/Item/28561 
 

Creating REST, WebBroker and Service based DataSnap Server Applications 

 

http://docwiki.embarcadero.com/RADStudio/en/DataSnap_Connectors_for_Mobile_Devices
http://edn.embarcadero.com/article/41189
http://cc.embarcadero.com/Item/28542
http://cc.embarcadero.com/Item/28543
http://cc.embarcadero.com/Item/28561


E-Learning Series: Getting Started with Windows and Mac Development 

Page 47 

Instead of building a FireMonkey HD,  VCL  Form,  Console or Service based DataSnap application server 

you can also create a DataSnap REST Server Application and a DataSnap WebBroker Server Application.  

These types of DataSnap server applications are also easy to build but go  beyond the scope of this 

“Getting Started” course. 

 

You can learn more how to build these types of DataSnap servers on the Embarcadero DocWiki at 

 

 DataSnap REST Application Wizard - 

http://docwiki.embarcadero.com/RADStudio/en/DataSnap_REST_Application_Wizard  

 DataSnap WebBroker Application Wizard - 

http://docwiki.embarcadero.com/RADStudio/en/DataSnap_WebBroker_Application_Wizard 

 DataSnap Server Wizard - 

http://docwiki.embarcadero.com/RADStudio/en/DataSnap_Server_Wizard  

 

The Embarcadero DocWiki has complete coverage of building DataSnap applications starting at 

http://docwiki.embarcadero.com/RADStudio/en/Developing_DataSnap_Applications 

 

Filtering DataSnap Byte Streams 

 

The communication between a DataSnap client and a DataSnap server can be intercepted by a suite of 

filters. Each filter can perform transformations over the byte stream such as encryption and/or 

compression; the byte stream can be intercepted by more than one filter and such the output of one 

becomes the input of the next filter. The filters are atta ched to the byte stream at design time (or 

coded), by setting the Filters property of the DataSnap server transport components such as 

DSTCPServerTransport.TDSTCPServerTransport.  

 

     
 

http://docwiki.embarcadero.com/RADStudio/en/DataSnap_REST_Application_Wizard
http://docwiki.embarcadero.com/RADStudio/en/DataSnap_WebBroker_Application_Wizard
http://docwiki.embarcadero.com/RADStudio/en/DataSnap_Server_Wizard
http://docwiki.embarcadero.com/RADStudio/en/Developing_DataSnap_Applications


E-Learning Series: Getting Started with Windows and Mac Development 

Page 48 

 
 

     
 

The filters are available at design time if they are pres ent in a package registered with RAD Studio. The 

filter needs to be built into a package and the package needs to be installed into Delphi. Server -side 

design time support enables the filter to show up in the filter list editor. Client -side design-time support 

enables design-time connection using TSQLConnection. 

 

There is no need to associate filters at the client side, as they are automatically instantiated based on a 

handshake protocol between client and server. Hence it is important that the client code registers the 

filters before connecting to a filtered server either by adding the unit name to  the uses clause or in an 

early stage, such as initialization time. 

 

You can also create your own filters for your DataSnap servers and clients.  There are three things you 

need to do:  Define a filter, Implement the filter code and Register a filter. 

 

Defining a Filter 

 

Any filter should extend the TTransportFilter class and the implementation needs to provide at 

minimum an ID that uniquely identifies it and two methods: ProcessInput and ProcessOutput. 

 
public 
  function ProcessInput(const Data: TBytes): TBytes; override; 
  function ProcessOutput(const Data: TBytes): TBytes; override; 
  function Id: UnicodeString; override; 

 

The processing methods are inverse to one another: the result of one passed as input to the other 

produces the initial input. 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 49 

 

Each connection instantiates a filter, so it is not necessary that the processing functions be thread safe; 

local variables can be used for instance, but do not  assume a  state-full state for an instance. 

 

The default no-parameter constructor is used to instantiate a filter instance. Additional parameters may 

be needed to have the client instances compatible with the server instances. Parameter values can be 

exchanged between server-side filters and client-side filters. As an example, this may be necessary if a 

location for the encryption key needs to be passed along if one chooses to implement a symmetrical 

encryption filter. 

 

All parameters are exposed as (name, string) pairs. Their names can be returned through the 

GetParameters method and their values can be queried or changed using GetParameterValue and 

SetParameterValue. 

 
protected 
  function GetParameters: TDBXStringArray; override; 
public   
  function GetParameterValue(const ParamName: UnicodeString): 
    UnicodeString; override; 
  function SetParameterValue(const ParamName: UnicodeString; 
    const ParamValue: UnicodeString): Boolean; override; 

 

In some cases, all parameters or a subset of those parameters needs to b e changed at design time; their 

names can be provided by the GetUserParameters method. 

 
protected 
  function GetUserParameters: TDBXStringArray; override; 

 

Note that the parameter names that are not returned by this method are not visible or editable at 

design time. 

 

Implement the Filter Code 

 

Write the code required to implement the functions defined above.  You  can see examples  

 

The TTransportFilter class is defined and implemented in the source file Data.DBXTransportFilter.pas . 

 

The two of the three Transport Filters are implemented in the following source files: 

 

 RSA - Data.DBXRSAFilter.pas 

 Zlib Compression - Data.DbxCompressionFilter.pas 
 

Registering a filter 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 50 

A filter needs to be registered with the TTransportFilterFactory singleton. The recommended w ay to 

register a filter is through the unit initialization and finalization sections, but it can be coded through an 

initialization phase in the user's application. 

 

Below is the code snippet registering the compression filter available out of the  box:  

 
Initialization 
 
  TTransportFilterFactory.RegisterFilter( 
    TTransportCompressionFilter); 
  
finalization 
  TTransportFilterFactory.UnregisterFilter( 
    TTransportCompressionFilter); 

 

The Encryption Filter 

 

The encryption filter is used to encrypt a DataSnap byte stream. The encryption filter works on the 

server side as well as on the client side. In the following lines the behavior of the encryption filter is 

described. 

 

Server side: 

 

 Both DSTCPServerTransport.TDSTCP ServerTransport and DSHTTP.TDSHTTPServic e components 
have a Filters property. 

 When selecting the filter property you  can add a new filter in the dialog that comes up. In the 

FilterId property, you can choose PC1 or RSA.  

 In case of using the PC1 encryption filter, the Properties property holds th e Key value to use for  
the encryption. If using the RSA filter, the Properties property holds a list of three properties, 

UseGlobalKey, KeyLength, and KeyExponent.  

 

Client side: 

 

 The Driver property on  the TSQLConnection has a Filters property.  

 

In this way, when you  actually run the client/server, the communication between them will be 

encrypted.  There are some things to take into account while using the encryption filter with DataSnap 

client/server applications: 

 The data encryption is not available with thin clients. 

 If the server has an encryption filter but the client does not, then the client will automatically 

add the filter. 

 If the client has an encryption filter but the server does not, then the client will drop its filter 

and will not use it. 

 

The Compression Filter 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 51 

The compression filter is based on ZLib and provides compression capabilities for DataSnap byte 

streams. The compression filter works both on the server side and the client side. 

 

The DSTCPServerTransport.TDSTCPServerTransport and DSHTTP.TDSHTTPService components have a 

Filters property. This is where you add a new filter setting the FilterId property to ZLibCompression. You 

can also specify properties for the compression filter by setting the Properties property. 

 

The Delphi Labs: DataSnap series – Episode 6: “DataSnap Transport Filters” white paper shows you how 

to use Filters in your Delphi DataSnap applications - http://edn.embarcadero.com/article/41293 

 

Using Web Services in your Windows and Mac Applications 

 

Web Service applications are server implementations that do not require clients to use a specific 

platform or programming language. These applications define interfaces in a language -neutral 

document, and they allow multiple communication mechanisms. 

 

Web Services were first designed to work using Simple Object Access Protocol (SOAP)  - 

http://en.wikipedia.org/wiki/SOAP.  SOAP  is a standard lightweight protocol for exchanging information 

in a decentralized, distributed environment.  SOAP  uses XML to  encode remote procedure calls and 

typically uses HTTP as a communications protocol. 

 

SOAP  Web Service applications use a Web Service Definition Language (WSDL), 

http://www.w3.org/TR/wsdl, document to publish information on interfaces that are available and how 

to call them. On the server side, your application can publish a WSDL document that describes your Web 

Service. On the client side, a wizard or command-line utility can import a published WSDL document, 

providing you with  the interface definitions and connection information you need. If you already have a 

WSDL document that describes the Web service you want to implement, you  can generate the server-

side code when you import the WSDL document.  

 

Another Web Service software architecture, REST based Web Services, has emerged in recent years to 

become the dominant World Wide Web standard.  REST stands for Representational State Transfer and 

was created to work with HTTP v1.1.  REST got its start as Roy Fielding’s University of California Doctoral 

Dissertation, “Architectural Styles and the Design of Network-based Software Architectures”.  You  can 

find Fielding’s dissertation at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm (Fielding, Roy 

Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral 

dissertation, University of California, Irvine, 2000).  Chapter 5 of the dissertation introduces REST - 

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm . 

 

Conforming to  REST constraints is referred to as being RESTful. A RESTful web service is implemented 

using HTTP  (hypertext transfer protocol) and the principles of REST.  REST assumes that the server is 

able to serve four types of requests: GET, P OST, PUT, and DELETE. These operations  represent Retrieve, 

Update, Insert, and Delete data operations. These operations are assimilated with the server methods 

through a mapping protocol. REST assumes that each server method can be invoked as one of the 

operations above through a dispatch mechanism that assumes a mapping between the URI (Uniform 

Resource Identifier) path, method name, and parameters. 

 

http://edn.embarcadero.com/article/41293
http://en.wikipedia.org/wiki/SOAP
http://www.w3.org/TR/wsdl
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm


E-Learning Series: Getting Started with Windows and Mac Development 

Page 52 

For additional information about building Web Services, take a look at the following web sites and 

videos: 

 

 Embarcadero DocWiki article about REST - 

http://docwiki.embarcadero.com/RADStudio/en/REST  

 DataSnap supports building REST servers - 
http://docwiki.embarcadero.com/RADStudio/en/DataSnap_REST_Application_Wizard  

 W3C SOAP  v1.1 specification - http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 

 Writing Servers that support Web Services - 
http://docwiki.embarcadero.com/RADStudio/en/Writing_Servers_that_Support_Web_Services  

 Writing Clients for Web Services - 

http://docwiki.embarcadero.com/RADStudio/en/Writing_Clients_for_Web_Services 

 Building and Consuming Web Services with Delphi 2009 - 
http://blogs.embarcadero.com/pawelglowacki/2008/12/18/38624/ 

 

Creating a Web Service Application and a Windows and Mac Client application 

that uses the services 

 

In this section we’ll build a Simple Calculator SOAP Web Server and build a FireMonkey client  application 

that calls the Web Service’s methods and displays the results.   In this example, I will follow similar 

building web service steps that Pawel Glowacki documented in his Delphi 2009 based blog post at 

http://blogs.embarcadero.com/pawelglowacki/2008/12/18/38624/.  In Pawel’s example, he built a web 

service based CGI application that required you to have Microsoft’s IIS (Internet Information Server).   

For my example, I will build a web services console application that can run as a standalone web server 

application. 

 
There are many types of SOAP  Web Service application that you can create with Delphi and C++Builder.  

The “New SOAP  Server Application” wizard lets you build: 

 

 Stand-alone VCL application - An Internet Direct (Indy or Indy.Sockets) application that uses VCL 

forms. 

 Stand-alone console application - An Internet Direct (Indy or Indy.Sockets) console application.  

 ISAPI dynamic link library - ISAPI Web server applications are DLLs that are loaded by the Web 
server. Client request information is passed to the DLL as a structure. Each request message is 

handled in a separate execution thread. 

 CGI stand-alone executable - A CGI stand-alone Web server application is a cons ole application 

that receives client request information on standard input and passes the results back to the 

server on standard output. Each request message is handled by a separate instance of the 

application. 

 

As previously noted, you can also build DataSnap REST server applications that implement RESTful web 

services using TCP, HTTP  and HTTPs.  You  can also use the Indy server components to create your own 

server side services. 

 

http://docwiki.embarcadero.com/RADStudio/en/REST
http://docwiki.embarcadero.com/RADStudio/en/DataSnap_REST_Application_Wizard
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://docwiki.embarcadero.com/RADStudio/en/Writing_Servers_that_Support_Web_Services
http://docwiki.embarcadero.com/RADStudio/en/Writing_Clients_for_Web_Services
http://blogs.embarcadero.com/pawelglowacki/2008/12/18/38624/
http://blogs.embarcadero.com/pawelglowacki/2008/12/18/38624/


E-Learning Series: Getting Started with Windows and Mac Development 

Page 53 

Step 1 – Create the simple calculator SOAP server application 

 

To start building the Simple Calculator Web Services application we’ll start by using the “New Soap 

Server Application” wizard.  Use File > New > Other > Delphi Projects > Web Services > SOAP Server 

Application or  File > New > Other > C++Builder  Projects > Web Service s > SOAP Server Application  to  

bring up wi zard. 

This is the first of two wizard dialog boxes that will help create the type of server your Web 
Service application will work with.  

 
 

To keep things simple, we’ll choose Stand-alone console application.  You  could also create your own 

starting project (not using the wi zard) and add Web Server and Web Service components and code to 

create a FireMonkey based server application.  After making the selection click the “Next” button.  

 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 54 

 

Page 2 of the wizard lets you choose the HTTP  port number for  your  SOAP  server application.  You can 

input a port and click the “Test Port” button to  make sure that port is available.  You can also click the 

“Find Open Port” button  and the wizard will find an available port for your  application to use.  If you  

want to use secure HTTPS you  can click the checkbox.  For  our  simple calculator we will choose port 

8085 and then click the “Finish” button. 

 

The wizard generates a new Web server application that includes a Web module which co ntains three 

components: 

 

 An invoker  component (Soap.SOAPHTTPPasInv.THTTPSoapPascalInvoker). The invoker converts 
between SOAP  messages and the methods of any registered invokable interfaces in your Web 

Service application. 

 

 A dispatcher component (Soap.WebBrokerSOAP.THTTP SoapDispatcher). The dispatcher 

automatically responds to incoming SOAP  messages and forwards them to the invoker. You  can 

use its WebDispatch property to identify the HTTP  request messages to which your application 

responds. This involves setting the PathInfo property to  indicate the path portion of any URL 

directed to your application, and the MethodType property to indicate the method header for 

request messages. 

 

 A WSDL publisher (Soap.WSDLPub.TWSDLHTMLPublish). The WSDL publisher publishes a WSDL 

document that describes your interfaces and how to call them. The  WSDL  document tells clients 

that how to call on your  Web Service application. For details on using the WSDL publisher, 

see Generating WSDL Documents for  a Web Service Application. 

 

 
 

The SOAP  dispatcher and WSDL publisher are auto-dispatching components. This means they 

automatically register themselves with the Web module so that it forwards any incoming requests 

addressed using the path information they specify in their  WebDispatch properties. If you right -click on 

the Web module, you can see that in addition to these auto-dispatching components, it has a single 

Web action item named DefaultHandler. 

 

http://docwiki.embarcadero.com/Libraries/en/Soap.SOAPHTTPPasInv.THTTPSoapPascalInvoker
http://docwiki.embarcadero.com/Libraries/en/Soap.WebBrokerSOAP.THTTPSoapDispatcher
http://docwiki.embarcadero.com/Libraries/en/Soap.WSDLPub.TWSDLHTMLPublish
http://docwiki.embarcadero.com/RADStudio/en/Generating_WSDL_Documents_for_a_Web_Service_Application


E-Learning Series: Getting Started with Windows and Mac Development 

Page 55 

DefaultHandler is the default action item. That is, if the Web module receives a request for which it can't 

find a handler (can't match the path information), it forwards that message to the default action item.  

DefaultHandler generates a Web page that describes your Web Service. To  change the default action, 

edit this action item's OnAction event handler. 

 

Step 2 – Create the starting Web Service Interface 

 

After the project is created, the next step is to create the interfaces and implem entations for the 

methods your Web Service will provide.  You  will see the following dialog box appear:  

 

 
 

Click the Yes button to start creating your Web Service interfaces .  You  can also choose to create the 

interfaces later on. 

 

 
 

Type SimpleCalculator for your  service name.  The unit  name will also echoed but you can create any 

source file unit name you want for  your  service interfaces and implementations . 

 

The Add New Web Service wizard lets you specify the name of the invokable interface you want to  

expose to clients, and generates the code to declare and register the interface and its implementation 

class. The wizard has options to also generate comments and sample methods and additional type 

definitions, to help you get started in editing the generated files.  Since we are going to create calculator 

methods, keep the “Generate comments” check box checked and don’t check the “Generate sample 

methods” check box. 

 

You can choose the Service activation model in the dialog.  The choices are: 

 

 Per Request creates a new instance of your implementation class in response to each request it 
receives. That instance is freed after the request is handled.  



E-Learning Series: Getting Started with Windows and Mac Development 

Page 56 

 Global Object creates a single instance of your  implementation class, which is used to handle all 

requests.  

 

To keep things simple, choose the “Per Request” Service activation model. 

 

Save the Web Service server application project – File > Save All.  Click OK  to keep the names for the 

web service implementation files and the web module. Save the project name a s 

“SimpleCalculatorWebService”. 

 
The Project Manager view for your Delphi or C++ Web Service application will look like the following:  

 

     
 

Step 3 – Define and implement your Web Service methods 

 

To complete the Web Service application we need to define and implement the methods that client 

applications will use.  For our simple calculator, we’ll create the addition and subtraction methods.  A 

follow on exercise for you  will be to define and implement the multiply and divide methods to complete 

the simple calculator web service. 
 

For Delphi,  

 

a) Add the following lines in the SimpleCalculatorIntf.pas file’s interface section inside the public area of 

the ISimpleCalculator interface declaration: 

 
function Add(a,b: integer): integer; stdcall; 
function Subtract(a,b: integer): integer; stdcall; 

 

b) Add the following code in  the SImpleCalculatorImpl.pas file’s interface and implementation sections: 

 
{ TSimpleCalculator } 
TSimpleCalculator = class(TInvokableClass, 
    ISimpleCalculator) 
  public 
    function Add(a,b: integer): integer; stdcall; 
    function Subtract(a,b: integer): integer; stdcall; 
  end; 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 57 

 
function TSimpleCalculator.Add(a,b: integer): integer; stdcall; 
begin 
  Result := a+b; 
end; 
 
function TSimpleCalculator.Subtract(a,b: integer): integer; 
stdcall; 
begin 
  Result := a-b; 
end; 

 

For C++,   

 

a) Add the following lines in the SimpleCalculator.h file’s area of the ISimpleCalculator interface 

declaration: 

 
public: 
  virtual int Add(int a, int b) = 0; 
  virtual int Subtract(int a, int b) = 0; 

 

b) Add the following declarations in the SimpleCalculator.cpp file’s public section of the 

TSimpleCalculatorImpl class: 

 
public: 
  int Add(int a, int b); 
  int Subtract(int a, int b); 

 

c) Add the following function implementations in the SimpleCalculator.cpp file t o implement the 

calculator methods: 

 
int TSimpleCalculatorImpl::Add(int a, int b) { 
  return a + b; 
} 
 
int TSimpleCalculatorImpl::Subtract(int a, int b){ 
  return a-b; 
} 

 

Your SOAP server is now implemented and ready to run.  

 

Choose File > Save All to  save your changes. 

 

Step 4 – Run your SOAP Web Server Application. 

 

Hit Shift-Control-F9  or choose Run without Debugging to  start your Web Server  console application.  You  

will see the following console window appear along with (the first time you run  it) a W indows FireWall 

warning for the  applications request to use a TCP/IP port:  

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 58 

 
 

Click the “Allow Access” button for the  SimpleCalculatorWebService.exe application.  Your Web Service 

is now ready to receive method calls on port 8085 or whatever port you  chos e. 

 

To test the Web Service you can point your  browser at the server and port where the application is 

running.  I f it is your  development machine you can use http://localhost:8085/ to access the interfaces 

of your  Web Service. 

 

 
 

This browser result page shows you the Web Services defined in your  Web Server application and also 

the WSDL published interfaces.  You  can point your browser at other Internet web services applications 

and see similar results.  You  can right mouse-click on the ISimpleCalculator [WSDL] link to  place the URL 

on the clipboard for use a later step using the WSDL Import  wizard.  



E-Learning Series: Getting Started with Windows and Mac Development 

Page 59 

 

 

Step 5 – Create a FireMonkey Client Application that will consume the Web 

Service 

 

Now that the Web Services application is running, we can create a FireMonkey client application (HD or 

3D) that will provide the UI and  call the remote methods to use the Simple Calculator. 

 
Start building a FireMonkey HD application.  In the Project Manager view - right mouse-clicking or click 

the Add New Project speed button a nd choose from the project categories FireMonkey HD Application 

– Delphi or FireMonkey HD Application – C++Builder.  This will add a new project to go  with the Server  

application. 

 

Save the client project and project group by clicking “Save All” .  Name the Client project 

“DelphiFMClientApplication” or “CppFMClientApplication”.  Name the Project Group 

“DelphiCalcWebServicesProjectGroup” or “CppCalcWebServicesProjectGroup” (or whatever name you 

choose). 

 

Step 6 – Use the WSDL importer to create an Web Services interface unit for 

your client application 

 

Your client application will need the interfaces for the Web Services methods.  To  create the interface 

file(s) the client needs we’ll use the WSDL importer wizard.  Remember to have your  Web Server 

application running. 

 

Choose File > New > Other…  and from the Delphi Projects or C++ Builder Projects Web Services 

Category, choose the WSDL Importer wizard.  

 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 60 

 

Type or  paste the URL location for your  Web Services application.  In the simple calculator case this is 

“http://localhost:8085/wsdl/ISimpleCalculator”. 

 

 
 

If the web service requires login authentication, you can enter that information in the provided boxes.  

For our  simple calculator web service, just click the “Next” button.  You will then see the second page of 

the WSDL Import  Wizard where you  can select which WDSL binding extensions to use. 

 

 
 

The default choice is to let the WSDL Import  Wizard get the version information from the SOAP  Server 

and generate the right interfaces for you.   Leave “Automatic SOAP  versioning” selected and click the 

“Next” button. 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 61 

 

 
 

The third and final dialog in the WSDL Import Wizard allows you to choose from the many different 

options.  Use this wizard page to configure  the way the wi zard generates code to represent definitions in 

a WSDL document. You should typically use the default options, because the defaults provide the safest 

way to import WSDL documents. Information about each of the options is available by clicking the 

“Help” button and on the Embarcadero DocWiki at 

http://docwiki.embarcadero.com/RADStudio/en/Import _WSDL _Wizard. 

 

We’ll leave all of the default options and click the “Finish” button. 

 

The following error messages can be generated by the Import WSDL wi zard: 

 

 Unable to load WSDL File/Location: <wrongURL>.  Error  [Empty document]  - This error message 
typically indicates an invalid URL. That is, a URL that does not  return any content.  

 Unable to load WSDL File/Location: <url>. Error  [Whitespace is not allowed at thi s location] - 

This error indicates a URL that returned HTML or  text content (i.e. a URL that did not return  XML  

content) 

 Unable to load WSDL File/Location: <url>. Error  [End tag 'ul' does not match the start of tag 'p ']  - 

This error also indicates a URL that returned HTML  content. This message is common if you  

forgot the  '?wsdl' query string commonly used by some WebServices. For example, if you use 

http://<domain>.com/service.asmx instead of http://<domain>.com/service.asmx?wsdl for a 

.NET WebService. 

 *Error*:  '<url>' - Missing <definition> node of namespace http://schemas.xmlsoap.org/wsdl/. - 
This error indicates that the URL returned XML  content but that latter did not contain the root 

http://docwiki.embarcadero.com/RADStudio/en/Import_WSDL_Wizard
http://schemas.xmlsoap.org/wsdl/


E-Learning Series: Getting Started with Windows and Mac Development 

Page 62 

<definition> element expected for a WSDL  file. This will happen if you  impor t the schema used 

by a WSDL  instead of the WSDL  document itself, for example.  

 

If the Web Service is not running, you  will most likely see the following error message when you click the 

“Finish” button on the WSDL Import  Wizard final dialog box.  

 

 
 

If any error  happens, make sure your Web Service application is running and restart the WSDL Import 

Wizard and step through the dialogs.  A simple way to troubleshoot your URL is to view the WSDL  URL  in 

your browser. You  should see the service info page that I showed you earlier. 

 

If all is good, then a source code file (and a header file for C++Bu ilder) will be generated containing the 

declaration and implementation of the interfaces for the Simple Calculator that you can use in your 

client application.  You can also use the WSDL Import  Wizard for your  server application for the cases 

when your Web Service also uses other Web Services. 

 

For Delphi, the wizard generates the ISimpleCalculator1.pas file.  For C++,  the wizard generates the 

ISimpleCalculator.cpp and ISimpleCalculator.h files. 

 

Save the project group (server and client) using File > Save  All.  You can leave the filenames as they were 

created by the wizard.  Your Project Manager view should now look something like the following images 

for your  Delphi or C++ project group.  

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 63 

     
 

Step 7 – Create the UI for the Client Application and use the Web Service 

Methods 

 

In order to start using the remote methods in the client application, we need to make sure that we have 

access to the file(s) generated by the WSDL  Import Wi zard.  Make sure your client application is the 

active project in the group and  select the CalcUnit.pas or CalcUnit.cpp file (or the client form file that 

you created) and use File > Use Unit to  add the ISimpleCalculator file(s) to your  Delphi unit’s 

implementation section or your C++ unit’s source code. 

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 64 

     
 

// Delphi 
implementation 
{$R *.fmx} 
uses ISimpleCalculator1; 

 
// C++ 
#include "ISimpleCalculator.h" 

 

Now that we have access to the Web Servers remote methods, we can build the User Interface that will 

use them.  The Simple Calculator Web Service has Add and Subtract methods.  To  complete the UI, we’ll 

need to add two edit boxes for  input, two TLabel components to identify the edit boxes, two 

TSpeedButton (or  TButton) components to call the Add and Subtract methods , and a TLabel to display 

the method result. 

 

Your client form and structure view should look something like the following:  

 

     
 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 65 

     
 

Finally, we can add event handlers for the Add (+) and  Subtract (-) speed buttons to take the contents of 

the edit boxes, call the Web Service methods and display the result in the label (above with the 0 text 

string).  Double click on each of the speed buttons  (or  use the Object Inspector’s events tab and select 

the OnClick event) to  create the skeleton event handler and then add the following code.  

 
//Delphi 
procedure TForm3.AddSpeedButtonClick(Sender: TObject); 
var 
  a,b,c: integer; 
begin 
  a := StrToInt(EditA.Text); 
  b := StrToInt(EditB.Text); 
  c := GetISimpleCalculator.Add(a,b); 
  ResultLabel.Text := IntToStr(c); 
end; 
 
procedure TForm3.SubSpeedButtonClick(Sender: TObject); 
var 
  a,b,c: integer; 
begin 
  a := StrToInt(EditA.Text); 
  b := StrToInt(EditB.Text); 
  c := GetISimpleCalculator.Subtract(a,b); 
  ResultLabel.Text := IntToStr(c); 
end; 

 

// C++ 
void __fastcall TForm3::AddSpeedButtonClick( 
    TObject *Sender) { 
  int a = StrToInt(EditA->Text); 
  int b = StrToInt(EditB->Text); 
  int c = 
    NS_ISimpleCalculator::GetISimpleCalculator()->Add(a,b); 
  ResultLabel->Text = IntToStr(c); 
} 
//---------------------------------------------------------------
------------ 
void __fastcall TForm3::SubSpeedButtonClick( 
    TObject *Sender) { 
  int a = StrToInt(EditA->Text); 
  int b = StrToInt(EditB->Text); 
  int c = 
    NS_ISimpleCalculator::GetISimpleCalculator()->Subtract(a,b); 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 66 

  ResultLabel->Text = IntToStr(c); 
} 

 

Save your work with File > Save  All 

 

Step 8 – Compile and Run the Client Application 

 

With your Web Service application running and the client application activated in your project group, hit 

F9 or choose Run or Run without Debugging.  If all is well in our source code, the client applic ation will 

compile and run. 

 

Enter numbers in the two edit boxes and click the Add and  Subtract buttons to see the result displayed. 

 

 
 

 
 

If you  want to run  the client application on the Mac, modify the constant strings in the 

ISimpleCalculator1.pas (Delphi) and ISimpleCalculator.cpp (C++) unit to  point to the TCP/IP  and port 

address where your Web Service is running (instead of using localhost ). 

 
// Delphi 
// Filename: ISimpleCalculator1.pas 
function GetISimpleCalculator(UseWSDL: Boolean; 
  Addr: string; HTTPRIO: THTTPRIO): ISimpleCalculator; 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 67 

const 
  defWSDL = 'http://localhost:8085/wsdl/ISimpleCalculator'; 
  defURL  = 'http://localhost:8085/soap/ISimpleCalculator'; 
 
// C++ 
// Filename: ISimpleCalculator.cpp 
_di_ISimpleCalculator GetISimpleCalculator( 
  bool useWSDL, System::String addr, 
  Soaphttpclient::THTTPRIO* HTTPRIO) { 
  static const char* defWSDL= 
    "http://localhost:8085/wsdl/ISimpleCalculator"; 
  static const char* defURL = 
    "http://localhost:8085/soap/ISimpleCalculator"; 

 
Save the client project, select the Target Platform to OSX  and run the client and hit F9  to run  the Mac 

client. 

 

 
 

 
 

That’s It!  You’ve created your first Web Services server and client application for Windows and Mac.   

You can also create Windows and Mac client applications that can use external Internet Web Services 

that Amazon, eBay and others provide.  Try using the WSDL Import  Wizard on  those services and build a 

client that uses their interfaces. 

 

You will find  additional information about Web Services on the Embarcadero DocWiki at:  

 



E-Learning Series: Getting Started with Windows and Mac Development 

Page 68 

 http://docwiki.embarcadero.com/RADStudio/en/Web_Services_Overview 

 http://docwiki.embarcadero.com/RADStudio/en/Using_Web_Services  

 http://docwiki.embarcadero.com/RADStudio/en/Import _WSDL _Wizard  

 http://docwiki.embarcadero.com/RADStudio/en/Writing_Servers_that_Support_Web_Services  

 http://docwiki.embarcadero.com/RADStudio/en/Writing_Clients_for_Web_Services 

 http://docwiki.embarcadero.com/RADStudio/en/Developing_Web_Services_with _Win32_Appli

cations 

 http://docwiki.embarcadero.com/RADStudio/en/Building_a_Hello_World_Web_Services_Applic
ation 

 

Using Cloud Storage and Services in your Windows and Mac Applications 

 

 
 

Beside DataSnap, which is the technology that allows you to build multi -tier applications, Rad Studio XE2 

provides Cloud components, which allow you to easily use cloud services from Amazon and Microsoft 

Azure. RAD Studio provides a framework that allows you to build cloud services and easily connect to 

your back-end services and databases. 

 

With RAD Studio's RAD Cloud deployment, you  can move your  data and services to the Cloud, making 

your applications accessible from virtually any platform or device from anywhere in the  world.  

 

RAD Studio Cloud Services 

The RAD Studio CloudAPI  unit: 

 

http://docwiki.embarcadero.com/RADStudio/en/Web_Services_Overview
http://docwiki.embarcadero.com/RADStudio/en/Using_Web_Services
http://docwiki.embarcadero.com/RADStudio/en/Import_WSDL_Wizard
http://docwiki.embarcadero.com/RADStudio/en/Writing_Servers_that_Support_Web_Services
http://docwiki.embarcadero.com/RADStudio/en/Writing_Clients_for_Web_Services
http://docwiki.embarcadero.com/RADStudio/en/Developing_Web_Services_with_Win32_Applications
http://docwiki.embarcadero.com/RADStudio/en/Developing_Web_Services_with_Win32_Applications
http://docwiki.embarcadero.com/RADStudio/en/Building_a_Hello_World_Web_Services_Application
http://docwiki.embarcadero.com/RADStudio/en/Building_a_Hello_World_Web_Services_Application


E-Learning Series: Getting Started with Windows and Mac Development 

Page 69 

 Holds the common functionality for the Amazon and Azure APIs, and any other Cloud  service 

that could be implemented, which uses a REST API and the same (or  a very similar) 

authentication mechanism. 

 Has SHA1 and SHA256 authentication implementations. Because of this, OpenSSL  libraries are 
required when using any API  that extends this unit. 

 Contains useful classes that are common across multiple APIs, such as TCloudResponseInfo and 

TCloudTableRow. 

 Contains the TCloudService class, which is the base service class which the Amazon and Azure 
API service classes extend. 

 

Azure Cloud Service 

 

The AzureAPI  unit is a redesign of the original DSAzure  API  shipped with RAD Studio. The API is now 

more intuitive. It is easier to find the function you  want to call, and it is  obvious how to get the result of 

the API call. It should also now be thread safe, so you do not need to make a new instance of the service 

class in new threads, if you do not  want to. Also, functions have been introduced to do the X ML  parsing 

of results for you.  There are now classes and lists that wrap various XML responses. You can still call the 

versions of these functions that return XML, if you  want to do the parsing yourself. The  service classes 

are: TAzureBlobService, TAzureQueueService, TAzureTable Service. The designer component for  creating 

a connection info instance is TAzureConnectionInfo.  

 

Amazon Cloud Service 

 

The AmazonAPI  unit is completely new to RAD Studio. It includes support for the Amazon Simple Queue 

Service (SQS), Amazon Simple Storage Service (S3) and Amazon SimpleDB service. These are very similar 

to their comparable services offered by Amazon.  You  use this API in  the same way you use the AzureAPI, 

but each of the services has subtle differences. You can see the Amazon REST API  docume ntation and 

Azure REST API  documentation for a better idea of the similarities and differences. Like the Azure API, 

the Amazon API  has functions that will do the XML parsing for you,  unless you want to implement that 

yourself. The service classes are: TAma zonTableService, TAmazonQueueService, 

TAmazonStorageService. The designer component for  creating a connection info instance is 

TAmazonConnectionInfo. 

 

Building your first Cloud base Windows and Mac Application 

 

Since this Lesson 9 course book is already over 70 pages  (and I am late to get this into your  hands and 

also going on summer vacation), I am going to  provide you  with links to the Embarcadero DocWiki for 

now and finish a step by step tutorial in the coming weeks: 

 

 http://docwiki.embarcadero.com/RADStudio/en/Developing_Cloud_Applications 

 http://docwiki.embarcadero.com/RADStudio/en/Cloud_Computing_with_DataSnap 

 http://docwiki.embarcadero.com/RADStudio/en/Azure _and_Cloud_Computing_with_DataSnap 

 http://docwiki.embarcadero.com/Libraries/en/Data.Cloud.CloudAPI 

http://docwiki.embarcadero.com/RADStudio/en/Developing_Cloud_Applications
http://docwiki.embarcadero.com/RADStudio/en/Cloud_Computing_with_DataSnap
http://docwiki.embarcadero.com/RADStudio/en/Azure_and_Cloud_Computing_with_DataSnap
http://docwiki.embarcadero.com/Libraries/en/Data.Cloud.CloudAPI


E-Learning Series: Getting Started with Windows and Mac Development 

Page 70 

 http://docwiki.embarcadero.com/Libraries/en/Data.Cloud.AzureAPI  

 http://docwiki.embarcadero.com/Libraries/en/Data.Cloud.AmazonAPI  
 

RAD Studio ships with a CloudAPI example for  Delphi and the Embarcadero DocWiki has additional 

information. 

 

 http://docwiki.embarcadero.com/CodeExamples/en/DataSnap.Cloud_Explorer_Sample  

 C:\Users\Public\Documents\RAD Studio\9.0\Samples\Delphi\CloudAPI\CloudExplorer 
 

We also have a video showing you how to use Amazon and Azure Cloud Services in your Delphi XE2 and  

C++Builder XE2 Applications : 

 http://edn.embarcadero.com/article/41902 

 

Here are some links to information about Microsoft and Amazon cloud services: 

 

 http://msdn.microsoft.com/en-us/library/dd163896.aspx 

 http://aws.amazon.com/documentation/sqs/ 

 http://aws.amazon.com/documentation/s3/ 

 http://aws.amazon.com/documentation/simpledb/ 
 

Deploy your application to the Cloud 

 

While we focused this section on using cloud storage and services in your Windows and Mac 

applications, you can also deploy your Windows applications to the cloud using the Deployment 

Manager. 

 

You can deploy your application to an Amazon EC2 server just as you would  deploy to any other  

computer. You’ll need to install the Windows Platform Assistant on the EC2 server and set up a local 

profile in RAD Studio with the  machine name and port of the server. After  tha t, you will be able to use 

the deployment manager to deploy your application (and any other required files) to the EC2  server. If 

the remote debugger is installed on the EC2  server, then it can be used to debug the  deployed 

applications. 

 

Summary, Looking Beyond, To Do Items, Resources, Q&A and the Quiz 

 

In Lesson 9 you learned how to build multi-client, multi-platform and multi-tier applications for 

Windows and Mac. There are many additional aspects to this topic that we did not have time to cover. 

But, at least you learned how to quickly build Windows a nd Mac client applications that work with 

DataSnap servers, Cloud services and Web Services.  There is much more to explore and I  have included 

links to articles and videos that will help you learn more. 

 

This is the last scheduled lesson in the “Getting Started with Windows and Mac Development”.  We  

could cover many additional getting started topics beyond the 9 lessons already presented.  I hope to 

http://docwiki.embarcadero.com/Libraries/en/Data.Cloud.AzureAPI
http://docwiki.embarcadero.com/Libraries/en/Data.Cloud.AmazonAPI
http://docwiki.embarcadero.com/CodeExamples/en/DataSnap.Cloud_Explorer_Sample
http://edn.embarcadero.com/article/41902
http://msdn.microsoft.com/en-us/library/dd163896.aspx
http://aws.amazon.com/documentation/sqs/
http://aws.amazon.com/documentation/s3/
http://aws.amazon.com/documentation/simpledb/


E-Learning Series: Getting Started with Windows and Mac Development 

Page 71 

add additional lessons in the future, so, please continue to send me email messages for topics you want 

to learn more about. 

 

Where do you  go  from here?  Start building your  own Windows and Mac applications with Delphi, C++ 

and FireMonkey.  Send me  emails (davidi@embarcadero.com) telling me about all the cool applications 

you are building for  Windows and Mac.  If you  have any questions, suggestions, course book corrections 

or need additional links to resources, examples, videos etc – just let me know.  

 

Good Luck and Keep on  Programming!!!  

 

To Do Items 

 

Add the Multiply and Divide methods to your  Web Services server application and update the client with 

Speed Buttons (or Buttons) to cal l the new methods. 

 

Compile and run the DataSnap and Web Services client applications  on Windows (Win32/64 for Delphi, 

Win32 for C++) and Mac (OSX32 for Delphi and C++).  If you  have time, try mixing Delphi and C++ clients 

for both  the DataSnap and Web Services server applications.  See for yourself that the Delphi client can 

work with the C++ server application and the C++ client can work with the Delphi server application. 

 

Use the WSDL Import  Wizard with other external Internet web services like Amazon, eBay to  create 

client applications that use their interfaces. 

 

Links to Additional Resources 

 Getting Started Course landing page - 

http://www.embarcadero.com/firemonkey/firemonkey-e-learning-series 
 Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software 

Architectures. Doctoral dissertation, University of California, Irvine, 2000. - 

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf 

 Pawel Glowacki’s Delphi Labs – Series 1: DataSnap – 11 episodes - 

http://www.embarcadero.com/rad-in-action/delphi-labs 

 The TIndex.net directory of FireMonkey resources - http://www.tindex.net/FireMonkey.html 

 Building Web Services the REST Way by Roger  Costello - http://www.xfront.com/REST-Web-

Services.html 

Q&A: 

Here are some of the answers for the questions I ’ve received (so far) for this lesson. I will continue to 

update this Course Book during and after course.  

 

If you  have any additional questions – send me an email - davidi@embarcadero.com 

 

mailto:davidi@embarcadero.com
http://www.embarcadero.com/firemonkey/firemonkey-e-learning-series
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.embarcadero.com/rad-in-action/delphi-labs
http://www.tindex.net/FireMonkey.html
http://www.xfront.com/REST-Web-Services.html
http://www.xfront.com/REST-Web-Services.html
mailto:davidi@embarcadero.com


E-Learning Series: Getting Started with Windows and Mac Development 

Page 72 

Self Check Quiz 

 

1. Delphi and C++ DataSnap server applications can run on which operating system? 

 

A: Windows  

B) Mac 

C) Linux  

 

2. Delphi and C++Builder support which of the following industry standard Web Service architectures? 

 

a) SOAP  

b) REST 

c) TOAST 

d) WSDL 

 

3. Which RAD Studio component provides the primary connection from a client application to a Delphi 

or C++Builder DataSnap server? 

 

a) THTTP RIO 

b) TSQLConnection 

c) TDSServer  

d) TDataSource 

 

4. Which Cloud Service is not directly supported by RAD Studio XE2? 

 

a) Amazon  Web Services/EC2 

b) R.A.I.N 

c) Microsoft Windows Azure  

 

Answers to the Self Check Quiz: 

 

1a, 2a&b, 3b, 4b 

 


