

E-Learning Series: Getting Started with Windows and Mac Development

Page 2

May 17: Lesson 3 – The Integrated Development Environment
Version: 1.1
Last Updated: May 21, 2012
Presented: May 23, 2012
Prepared by: David Intersimone “David I”, Embarcadero Technologies
© Copyright 2012 Embarcadero Technologies, Inc. All Rights Reserved.
davidi@embarcadero.com
http://blogs.embarcadero.com/davidi/

Contents

May 17: Lesson 3 – The Integrated Development Environment .. 2

Introduction .. 4

The Main Menu and Toolbars ... 6

The View menu ... 7

Creating your own custom IDE layouts ... 8

Customizing the File > New menu .. 9

The Welcome Page and Creating Favorite Project Groups ... 10

Using Project Templates from the Object Repository .. 13

Customizing the Main Form of your Application using the Object Inspector and Code Editor 15

Adding Components to your Application Using the Form Designer and Tool Palette 18

Finding Components using the Tool Palette ... 18

Finding Components using the Tool Palette’s Search Box .. 18

Finding Components using IDE Insight .. 19

Compositing Components ... 20

Customizing Components using the Object Inspector, Property Editors and Component Editors 21

Using the Object Inspector ... 21

Property Editors .. 23

Component Editors ... 24

Code Editor and History Lists .. 26

The Code Editor ... 26

Change Bars .. 26

Indenting Code .. 27

Formatting Code ... 27

mailto:davidi@embarcadero.com
http://blogs.embarcadero.com/davidi/

E-Learning Series: Getting Started with Windows and Mac Development

Page 3

Code Insight .. 28

Code Parameter Hints ... 28

Code Hints ... 29

Help Insight ... 29

Code Completion .. 30

Class Completion ... 30

Block Completion .. 30

Code Browsing (Ctrl-Click) ... 31

Code Navigation .. 31

Method Hopping ... 31

Finding Classes .. 32

Finding Units ... 32

Finding the Next and Previous Changes ... 32

Searching Source Code for Usages .. 32

Live Code Templates ... 32

Code Folding ... 33

Refactoring .. 34

Sync Edit .. 35

To-Do Lists ... 35

Keystroke Macros ... 36

Bookmarks .. 36

Block Comments ... 36

History List... 36

The Structure View, Delphi Class Explorer and C++ Class Explorer .. 38

Structure View .. 39

Delphi Class Explorer ... 40

C++ Class Explorer ... 42

Project Manager, Build Configurations and Option Sets .. 45

Project Manager.. 45

Build Configurations .. 48

Option Sets .. 49

Compiling and Running the Application ... 51

E-Learning Series: Getting Started with Windows and Mac Development

Page 4

Debugging the Application .. 52

Stepping Through Code ... 53

Evaluate Modify .. 53

Breakpoints ... 54

To set a source breakpoint.. 54

To set an address breakpoint .. 56

To set a data breakpoint ... 56

To set a module load breakpoint .. 57

To persist breakpoints from session to session .. 58

To modify a breakpoint ... 58

To create a breakpoint group ... 59

To enable or disable a breakpoint or a breakpoint group .. 59

To create a conditional breakpoint ... 59

To set a breakpoint on a specific thread ... 60

To associate actions with a breakpoint... 60

To change the color of the text at the execution point or the color of breakpoints 60

Watches .. 60

Debug Windows .. 61

Summary, Looking Forward, To Do Items, Resources, Q&A and the Quiz ... 64

To Do Items ... 64

Links to Additional Resources ... 64

Q&A: .. 64

Self Check Quiz .. 69

Answers to the Self Check Quiz: ... 70

Introduction

In lesson 2 you built your first Windows and Mac desktop applications using the Integrated
Development Environment (IDE), Platform Assistant (PAServer), the Delphi or C++ compiler and
FireMonkey. Delphi developers also used the Export to Xcode tool, and Xcode to build their first iOS
application.

In lessons 3 you will explore the IDE in much more detail. Topic areas for lesson 3 include:

 The Main Menu and Toolbars

 The View menu

E-Learning Series: Getting Started with Windows and Mac Development

Page 5

 Creating your own custom IDE layouts

 Customizing the File > New menu choices

 The Welcome Page and Creating Favorite Project Groups

 Using Project Templates from the Object Repository

 Customizing the main form of your application using the Object Inspector and Code Editor

 Adding Components to your Application Using the Form Designer and Tool Palette

 Customizing components using the Object Inspector, Property Editors and Component Editors

 Code Editor and History Lists

 The Structure View, Delphi Class Explorer, C++ Class Explorer

 Project Manager, Build Configurations and Option Sets

 Compiling and Running the Application

 Debugging the Application

When you start RAD Studio, the integrated development environment (IDE) launches and displays
several tools and menus. The IDE helps you visually design user interfaces, set object properties, write
code, and view and manage your application in various ways.

Put on your gloves, don your hard hat, turn on your halogen head lamp and let’s go IDE spelunking!

E-Learning Series: Getting Started with Windows and Mac Development

Page 6

The Main Menu and Toolbars

The IDE’s Main Menu contains all of the main commands for creating projects, managing projects,
compiling applications, debugging projects, creating components, setting IDE options, quick selecting
any open windows, help/documentation and the desktop layouts toolbar.

Just below the Main Menu is the Toolbar area which contains speed buttons for commonly used IDE
functions including View Unit, View Form, Toggle between Unit and Form, file operations, and
run/debug commands.

Toolbars can also be placed in multiple rows (the picture above shows my toolbar all on one row). The
View > Toolbars menu item allows you to choose the toolbars that are displayed in the IDE. If you right-
click an empty area on the Toolbar (located below the menus at the top of the IDE).

To arrange your toolbars

1. Click the grab bar on the left side of any toolbar.
2. Drag the toolbar to another location or onto your desktop.

To add icons to the toolbar

1. Choose View > Toolbars > Customize…
2. Click the Commands tab.
3. In the Categories list, select a category to view its tool icons.
4. From the Commands list, drag the selected icon onto the toolbar of your choice.
5. When completed, click Close.

E-Learning Series: Getting Started with Windows and Mac Development

Page 7

To delete icons from the toolbar

1. Choose View > Toolbars > Customize…
2. From the toolbar, not the Customize dialog box, drag the tool from the toolbar until its icon

displays an X and then release the mouse button.
3. When completed, click Close.

The View menu

The commands and dialog boxes on the View menu invoke managers, windows, browsers, and other
tools for viewing information in RAD Studio. There are hot keys for many of the views. You can see the
hot keys to the right of the menu items.

E-Learning Series: Getting Started with Windows and Mac Development

Page 8

Creating your own custom IDE layouts

There are several default IDE layouts that you can use. You can choose a preset desktop layout using
the View > Desktops menu item or by clicking on the down arrow in the desktop layout toolbar on the
right side of the Main Menu.

The Desktops toolbar allows you to choose among the preset desktop layouts and any custom desktop
layouts you have saved and to also save your current layout and set the layout you want to use for
debugging. Desktop layouts can be used to create and manage windows. You choices when using the
View > Desktops menu item include:

 None - Does not specify a preset desktop layout.

 Classic Undocked - Emulates earlier Delphi versions, with separate windows for the menus and
palette, designer, etc.

 Debug Layout - Customized for debugging, with call stack, thread, and other views shown
instead of the default windows used for designing applications.

 Default Layout - Shows all windows docked into one container, with the most-used designing
windows shown, including the tool palette, object inspector, design form, etc.

 Save Desktop - Invokes the Save Desktop dialog box.
Delete - Invokes the Delete Saved Desktop dialog box.

 Set Debug Desktop - Invokes the Select Debug Desktop dialog box.

To save a custom desktop layout, configure the IDE the way you want and then click on the Save
Desktop button or choose View > Desktops > Save Desktop. The Save Current Desktop dialog will
appear and you can type in a new desktop name (or replace an existing named desktop)

Note: The current desktop layout is one of the items saved to a .dsk file when you set Autosave Project
desktop on Tools > Options > Environment Options. The next time you open the project, the saved
desktop and other settings are restored, including breakpoints, watches, and open files.

http://docwiki.embarcadero.com/RADStudio/en/Environment_Options

E-Learning Series: Getting Started with Windows and Mac Development

Page 9

Customizing the File > New menu

After you install RAD Studio, the File > New menu will contain some of the common project types you
can create. You can see a complete list of “New Items” by using the File > Other… menu item.

E-Learning Series: Getting Started with Windows and Mac Development

Page 10

You can also customize your File > New menu to contain the project and file types that you use the most
often. Customize the File > New menu by choosing the File > New > Customize… menu item.

Use this dialog box to customize the content of the File > New menu by dragging menu items from the
center pane and dropping them on the right pane. There are three areas in the Customize New Menu
dialog box:

 Gallery Items - displays the folders of gallery items that are available in the Object Repository.
Click a folder to display its content in the center pane. The first item in the center pane is the
“Separator” which is used to add separator line(s) in the File > New menu items.

 Menu Items - displays the items that are currently listed on the File > New menu. To remove an
item from the File > New menu, drag it away from the list until its icon displays an X, and release
the mouse button. To change the text for a menu item, double-click the text and enter new text.
To add a separator bar between menu items, drag the Separator item from the center pane to
the menu list.

 Default Application on Startup - if you want to set a default application type, drag the item that
represents the application type from the center pane and drop it on this button. To remove the
default application, click the button.

When you are finished customizing your File > New menu, click the OK button.

The Welcome Page and Creating Favorite Project Groups

When you open RAD Studio, the Welcome Page appears with a number of links to developer resources,
such as product-related articles, training, and online Help. As you develop projects, you can quickly

E-Learning Series: Getting Started with Windows and Mac Development

Page 11

access them from the list of recent projects at the top of the page. If you close the Welcome Page, you
can reopen it by choosing View > Welcome Page.

The welcome page has its own menu bar where you can select recent and new projects, news from the
Embarcadero blogs and developer network, information about partner tools, Embarcadero web sites
and product documentation. You can use the home icon to get back to the Welcome page and use the
arrow icons to move back and forth for different pages (just like you would use in a browser).

The Welcome Page displays the recent projects you’ve been working on.

You can make any of your recent projects a Favorite by clicking on the “Make me a Favorite” link to the
right of the project. You can also create “favorite” groups of projects to quickly load them with a single
click. I usually have my Welcome Page set to show my favorite projects.

E-Learning Series: Getting Started with Windows and Mac Development

Page 12

To create a favorite project group, click on the “Manage Favorites” link on the left hand side of the
Welcome Page. At the bottom of the “Manage your Favorite Projects” page, give your favorites group a
new name and click the “Create” link.

After you have created a favorites group, you can move any of your new favorites into the group by
clicking on the “move” link to the left of a project. In the pull down list box select the favorite group for
the selected project and it will be moved to that list.

You can also click the “delete” link to remove any projects from a favorite project list.

E-Learning Series: Getting Started with Windows and Mac Development

Page 13

Using Project Templates from the Object Repository

The Object Repository or Gallery (File > New > Other…) makes it easy to create new projects, forms,
dialog boxes and other project and file types. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects.

The Object Repository:

 Is maintained in the file RADStudioRepository.xml (located in the \ObjRepos directory), an XML
file that contains references to the items that appear in the New Items dialog.

 Is filtered by platform so that the list contains only those project or form types that are
supported on the current target platform.

In the search box you can enter a search string: any part of the name of a project type or file type that
you want to locate in the Gallery. The New Items dialog box automatically displays only those items that
match the string as you type. Click X to clear the search string. Two well-known wild cards are
supported in the search:

 * matches as many characters as possible.

 ? matches any single character.

An inherent * is added to the beginning of each search string that you type, and to the end as well, to
allow matching of sub strings.

If you hover the mouse over an item, in the Object Repository, a description of the item (if available) will
be displayed in the help/comments area.

E-Learning Series: Getting Started with Windows and Mac Development

Page 14

You can add your own projects, forms, and other project files to those already available in the Object
Repository. If the item is a project or is in a project, open the project. For a project, choose the Project
> Add to Repository… menu item.

For a form or data module, right-click in the item and choose Add to Repository…

E-Learning Series: Getting Started with Windows and Mac Development

Page 15

For both, type in a title, description, and author. Select an icon to represent the object by clicking the
“Browse…” button. Decide in which category you want the item to appear or you can click on the “New
Category…” button and type a new category name. When you are finished, click the OK button.

Customizing the Main Form of your Application using the Object Inspector

and Code Editor

Using the File > New menu, select the “FireMonkey HD Application – Delphi” or “FireMonkey HD
Application – C++” project wizard. A project will be created with a main program and a main form that
is empty.

Use the Object Inspector to change the form caption to “My Main Form”. You can set the size of the
main form in the Object Inspector by changing the ClientHeight and ClientWidth properties. You can
also change the main form size by clicking the left mouse button on the lower right hand corner of the
form and dragging the mouse to visually set the form size. In the Object Inspector you can set the
WindowState property to wsNormal, wsMinimized and wsMaximized. There are additional properties
that you can set in the Object Inspector.

E-Learning Series: Getting Started with Windows and Mac Development

Page 16

You can also add additional forms to your project using the File > New > Other… then choose
“C++Builder Projects | C++Builder Files | FireMonkey HD Form” or Delphi Projects | Delphi Files |
FireMonkey HD Form”.

E-Learning Series: Getting Started with Windows and Mac Development

Page 17

Another way to customize the main form (or any other form) is by using the Code Editor. To view a form
as text, right mouse click on the form and choose “View as Text” from the popup menu.

The code editor will appear instead of the form designer. The text view of the form will contain the
object for the form and any properties that have values that are different from their default values.

E-Learning Series: Getting Started with Windows and Mac Development

Page 18

You can change the properties of the form using the code editor following the syntax property = value.
Be careful when you are editing the form in code editor as there is no syntax checking. When you are
finished, right-mouse click and choose “View as Form” (or use the Alt-F12 hot key) to return to the form
designer to visually see the changes you made. If you’ve made a mistake in the form code editor you
will see the following error:

Click the Cancel button and fix any errors and then choose “View as Form”.

Adding Components to your Application Using the Form Designer and Tool

Palette

In lesson 2 when you built your first Windows and Mac desktop application you saw how to find and add
components to a form. There are hundreds of reusable components available in the IDE for creating
user interfaces. There are three ways to find the components you want to use in your application.

Finding Components using the Tool Palette

Move your cursor over the Tool Palette and expand the Standard category by clicking the plus (+) icon.
Then select the TEdit component and drag and drop it onto the Form Designer (or double click on the
TEdit component in the Tool Palette and it will be added to the form).

Finding Components using the Tool Palette’s Search Box

E-Learning Series: Getting Started with Windows and Mac Development

Page 19

You can also use the Tool Palette’s search box to find a component. Click in the search box and start
typing the letters “ted” and then select the TEdit component from the component choices presented.

Then select the TEdit component and drag and drop it onto the Form Designer (or double click on the
TEdit component in the Tool Palette and it will be added to the form).

Finding Components using IDE Insight

The third way to find a component is to use IDE Insight by hitting the F6 key (or Control .) and start
typing the word “TEdit” and you’ll see several choices (Components, Templates, Projects and other IDE
capabilities that match the text you are typing) start to appear. Select the TEdit component from the list
to add it to the form.

Regardless of which method you use to find the component, an instance of the TEdit component will be
displayed on the form.

E-Learning Series: Getting Started with Windows and Mac Development

Page 20

Compositing Components

Just as you can put multiple components on a form (the form is the parent container for the
components), with FireMonkey every component can contain other components. This is called
compositing components. For example, you can attach a TLabel component to the edit box. Use one of
the methods above to put a TLabel on the form. Then in the Structure view, drag the TLabel component
onto the TEdit component.

On the form designer, move the Label above and to the right of the edit box. Then use the mouse to
move the edit box on the form. Notice that the label stays above and to the right of the edit box.

You can do this for any FireMonkey component. You can “parent” any number of components to
another component.

E-Learning Series: Getting Started with Windows and Mac Development

Page 21

Customizing Components using the Object Inspector, Property Editors and

Component Editors

Using the Object Inspector

The Object Inspector is the connection between your application's visual appearance and the code that
makes your application run. The Object Inspector enables you to:

 Set design-time properties for components you have placed on a form (or for the form itself).

 Create and help you navigate through event handlers.

 Filter visible properties and events.

When you have your components placed on a form, you can use the Object Inspector to change any of
the “published” properties. You can also change published properties in your program code.
Components can also have Public and Private properties that don’t appear in the Object Inspector and
can only be changed using code.

Use the Object Inspector to set the values you need for each component. To select a component you
can:

 Click on a component in the Form Designer

 Select a component in the Structure View

 Use the Instance List at the top of the Object Inspector

E-Learning Series: Getting Started with Windows and Mac Development

Page 22

You can customize the Object Inspector by right-mouse clicking it. The context menu is shown with a list
of customization options, such as the arrangement style of properties or the filtering options.

Object Inspector context menu commands include:

 View - Filters the display of properties or events.

 Arrange - Sorts the property or events by name or by category.

 Revert to Inherited - Changes the property setting back to its original, inherited value.

 Expand - Expands the selected property or event.

 Collapse - Collapses the selected property or event.

 Help - Displays this Help topic.

 Properties - Displays the Object Inspector Properties dialog box, allowing you to change the
appearance of the Object Inspector.

 Stay on Top - Displays the Object Inspector on top of the desktop even if other windows are
displayed.

 Dockable - Enables drag-and-dock for the Object Inspector.

The Properties page displays the properties of the component that is selected on the form. If the
Properties are arranged by name (the default), the first column on the Property page lists the names of
the selected component’s published properties as follows:

 If a plus sign (+) appears beside a property name, you can click the (+) to display the sub-
properties of that property. The list can include the possible values when the property
represents a set of flags (the value column lists the set enclosed in square brackets []), or sub-

E-Learning Series: Getting Started with Windows and Mac Development

Page 23

properties if the property represents an object (the value column gives the name of the object,
enclosed in parentheses).

 Similarly, if a minus sign (-) appears, you can click the (-) to collapse the sub-properties. When a
property has focus, you can also use the keyboard + and – keys to expand or collapse properties.

The second column on the Property page displays the property values as follows:

 When the property is selected, the value changes to an edit control where you can type a new
value.

 If the value can be set using a dialog, an ellipsis button appears when the property is
selected. Click this button to display a dialog where you can set the property. You can also
display the dialog by double-clicking the value column.

 If the value is an enumerated type, a drop-down button appears when the property is
selected. Click this button to display a drop-down list that you can use to set the property. You
can see images in the drop-down lists for properties that include images such as cursors, brush
types, colors, and image lists. To view images referenced by the ImageIndex property, you need
to set the property that holds the image list to the image list containing the images.

 If the value is another component, you can shift the Object Inspector's focus to that component
by holding down the Ctrl key while double-clicking.

Property Editors

Some properties, such as Font, have special property editors. Such properties appear with an ellipsis
mark (...) next to their value when the property is selected in the Object Inspector.

To open the property editor, double-click in the Value column, click the ellipsis, or type Ctrl+Enter when
focus is on the property or its value. With some components, double-clicking the component on the
form also opens a property editor.

http://docwiki.embarcadero.com/RADStudio/en/File:ProjectOptionsEllipsis.jpg
http://docwiki.embarcadero.com/RADStudio/en/File:ProjectOptionsDownArrow2.jpg

E-Learning Series: Getting Started with Windows and Mac Development

Page 24

Property editors let you set complex properties from a single dialog box. They provide input validation
and often let you preview the results of an assignment.

Component Editors

Component editors determine what happens when the component is double-clicked in the designer and
add commands to the context menu that appears when the component is right-clicked. They can also
copy your component to the Windows clipboard in custom formats.

TMenuBar is an example of a FireMonkey component that has a component editor. Add a TMenuBar
component to your form. Set the Align property to alTop.

There are three ways to select one of TMenuBar’s component editors:

1) Double-Click on the TMenuBar in the Form Designer to bring up its default component editor.

E-Learning Series: Getting Started with Windows and Mac Development

Page 25

2) Right Mouse Click on the TMenuBar in the Form Designer and select Items Editor… or Add Item from
the top of the popup menu.

3) Click on the Items Editor… or Add Item entries at the bottom of the Object Inspector

Component editors are created by the component creator. As part of the component implementation,
the component creator can add items to the context menu.

E-Learning Series: Getting Started with Windows and Mac Development

Page 26

Code Editor and History Lists

The Code Editor

The Code Editor occupies the IDE's center pane (along with the Form Designer). The Code Editor is a full-
featured, customizable UTF8 editor that provides syntax highlighting, multiple undo capability, and
context-sensitive help for language elements.

As you design the user interface for your application, RAD Studio generates the underlying code. When
you modify object properties, your changes are automatically reflected in the source files.

Because all of your programs share common characteristics, RAD Studio auto-generates code to get you
started. You can think of the auto-generated code as of an outline that you can examine to create your
program.

To help you write code, the Code Editor provides many features including Change Bars, Indenting Code,
Formatting Code, Code Insight, Code Parameter Hints, Code Hints, Help Insight, Code Completion, Class
Completion, Block Completion, Code Browsing, Code Navigation, Live Code Templates, Code Folding,
Refactoring, Sync Edit, To-Do Lists, Keystroke Macros, Bookmarks and Block Comments.

Change Bars

The left margin of the Code Editor displays a green change bar to indicate lines that have not been
changed in the current editing session. A yellow change bar indicates that changes have been made
since the last File > Save operation.

E-Learning Series: Getting Started with Windows and Mac Development

Page 27

You can, however, customize the change bars to display in colors other than the default green and
yellow. Select Tools > Options > Editor Options > Color. In the Element drop-down menu, select
Modified Line then change the foreground and the background colors.

Indenting Code

You can use the TAB key to indent the current line of code or a block of code in the Code Editor. The
number of spaces that the TAB key indents is determined by the Block indent option on the Tools >
Options > Editor Options > Source Options dialog box.

 To indent a line of code, place the cursor at the beginning of the line and press TAB.

 To indent an entire block of code, highlight the code block and press TAB.

 To move text to the left ("outdent"), use SHIFT + TAB.

Formatting Code

RAD Studio provides the customizable source code formatter. Editing Delphi or C++ code in the Code
Editor, you can apply the Format Source context menu command (or the Edit > Format Source menu
command) to format the source code. You can set the Indentation, Spaces, Line Breaks, Capitalization,
and Align formatting options under the Formatter group in the Options dialog box (Tools > Options >
Formatter).

Notice that the Format Source command implements automatic formatting of your code. It takes into
account only formatting options specified in the Options dialog box and totally overwrites all your
manual formatting implemented in the Code Editor. For example, it ignores your manual code indenting.
You can select a block of code and call the Format Source command, so that only this block will be
formatted.

Note: The Editor Options pages of Tools Options provide additional code formatting options, including
Source Options, Color, Display, Key Mappings, and Code Insight. See Customizing the Code Editor.

E-Learning Series: Getting Started with Windows and Mac Development

Page 28

Code Insight

Code Insight refers to a subset of features embedded in the Code Editor (such as Code Parameter Hints,
Code Hints, Help Insight, Code Completion, Class Completion, Block Completion, and Code Browsing)
that aid in the code writing process. These features help identify common statements you want to
insert into your code, and assist you in the selection of properties and methods. Some of these features
are described in more detail in the following subsections.

To invoke Code Insight, press CTRL+SPACE while using the Code Editor. A pop-up window displays a list
of symbols that are valid at the cursor location.

To enable and configure Code Insight features, choose Tools > Options > Editor Options and click Code
Insight.

When you're using the Delphi Language, the pop-up window filters out all interface method declarations
that are referred to by property read or write clauses. The window displays only properties and stand-
alone methods declared in the interface type.

Code Parameter Hints

After you type the opening parenthesis for a method, function or procedure, the code editor displays a
hint containing argument names and types between the parenthesis of a call, for example,
ShowMessage (|);. You can invoke Code Parameter Hints by pressing CTRL+SHIFT+SPACE.

E-Learning Series: Getting Started with Windows and Mac Development

Page 29

(C++)

(Delphi)

Code Hints

If you hover the mouse over symbols in the editor, a hint will be displayed containing information about
the symbol such as type, file, and line # declared at.

Note: Code Hints only work for Delphi when you have disabled the Help Insight feature. To disable Help
Insight, cancel the selection of Tooltip help insight on the Tools > Options > Editor Options > Code
Insight dialog box.

Help Insight

Help Insight displays a hint containing information about the symbol such as type, file, line # declared at,
and any XML documentation associated with the symbol (if available). Invoke Help Insight by hovering
the mouse over an identifier in your code, while working in the Code Editor. You can also invoke Help
Insight by pressing CTRL+SHIFT+H.

E-Learning Series: Getting Started with Windows and Mac Development

Page 30

Code Completion

The Code Completion feature displays a drop-down list of available symbols at the current cursor
location. You invoke Code Completion for your specific language in the following way:

In Delphi:

 Press CTRL+SPACE (always invokes Code Completion).

 Enter . (only works when Auto Invoke is enabled on the Code Insight page).

In C++:

 Press CTRL+SPACE (always invokes Code Completion).

 Enter . or -> (only works when Auto Invoke is enabled on the Code Insight page).

To cancel a Code Completion request, press the ESC key.

Class Completion

Class completion simplifies the process of defining and implementing new classes by generating
skeleton code for the class members that you declare. By positioning the cursor within a class
declaration in the interface section of a unit and pressing CTRL+SHIFT+C (or right-clicking and selecting
Complete class at cursor on the Code Editor Context menu), any unfinished property declarations are
completed. For any methods that require an implementation, empty methods are added to the
implementation section. You can also use class completion to fill in interface declarations for methods
that you define in the implementation section.

Block Completion

When you press ENTER while working in the Code Editor and there is a block of code that is incorrectly
closed, the Code Editor enters the closing block token at the next available empty line after the current

E-Learning Series: Getting Started with Windows and Mac Development

Page 31

cursor position. For instance, if you are using the Code Editor with the Delphi language, and you type the
token begin and then press ENTER, the Code Editor automatically completes the statement so that you
now have: begin end. This feature also works for the C++ language.

Code Browsing (Ctrl-Click)

While using the Code Editor to edit an application, you can use CTRL-click to automatically "jump to" the
code that defines an identifier. To browse code, hold down the CTRL key while passing the mouse over
the name of any class, variable, property, method, or other identifier. After the mouse pointer turns into
a hand and the identifier is highlighted and underlined, click the highlighted identifier, and the Code
Editor jumps to the declaration of the identifier, opening the source file, if necessary.

You can do the same thing by right-clicking an identifier and choosing Find Declaration from the context
menu. Code browsing can find and open only the units that exist in the project Search path or in the
global Browsing path.

Directories are searched in the following order:

 Either the project-specific Search path for Delphi (Project > Options > Delphi Compiler) or the
Include path for C++ (Project > Options > Directories and Conditionals).

 The global Browsing path (for Delphi: Tools > Options > Environment Options > Delphi Options
> Library, or for C++: Tools > Options > Environment Options > C++ Options > Paths and
Directories).

Code Navigation

Code Navigation allows you to navigate your code while you are using the Code Editor. There are
several Code Navigation capabilities including Method Hopping, Finding Classes, Finding Units, Finding
the Next and Previous Changes and searching source code for usages (Delphi only).

Method Hopping

You can navigate between methods using a series of editor hotkeys. You can also lock the hopping to
occur only within the methods of the current class. For example, if class lock is enabled and you are in a
method of TComponent, then hopping is only available within the methods of TComponent.

The keyboard shortcuts for Method Hopping are as follows:

 CTRL+Q^L -- toggles class lock.

 CTRL+ALT+UP -- moves to the top of the current method, or the previous method.

 CTRL+ALT+DOWN -- moves to the next method.

 CTRL+ALT+HOME -- first method in source.

 CTRL+ALT+END -- last method in source.

E-Learning Series: Getting Started with Windows and Mac Development

Page 32

 CTRL+ALT+MOUSE_WHEEL -- scrolls through methods.

Finding Classes

Use the Search > Find Class command to see a list of available classes that you can select. After you
choose one, the IDE navigates to the class declaration.

Finding Units

If you are programming in the Delphi language, you can use a refactoring feature to locate namespaces
or units. Use the Find Unit command to locate and add units to your code file.

Finding the Next and Previous Changes

As you edit code, you can use keystrokes to quickly navigate to the Next and the Previous changes that
you have made. The keyboard shortcuts are:

 Ctrl+Shift+F7 -- moves to the previous line modified since the file was opened (green marking in
the gutter).

 Ctrl+Shift+F8 -- moves to the next line modified since the file was opened (green marking in the
gutter).

 Alt+Shift+F7 -- moves to the previous line modified since the last save (yellow marking in the
gutter).

 Alt+Shift+F8 -- moves to the next line modified since the last save (yellow marking in the gutter).

If the next or previous line is in an elided (folded) block, the block is unfolded. Code folding is described
later in this topic.

Keystrokes are the same for the following keyboard mappings: Default, IDE classic, Brief, and Epsilon.
The Visual Studio and Visual Basic keyboard mappings do not have keystrokes for Next/Previous change.

Searching Source Code for Usages

If you are programming in the Delphi language, you can use the Search for Usages feature to find usages
of classes, methods, variables, and overriding methods, derived classes and implemented interfaces in
your source code projects.

Live Code Templates

E-Learning Series: Getting Started with Windows and Mac Development

Page 33

Live Templates allow you to have a dictionary of pre-written code that can be inserted into your
programs while you're working with the Code Editor. This reduces the amount of typing that you must
do.

To view the Live Code Templates available for your Delphi or C++ code, use the View > Templates menu
to display the Templates Window. The Live Templates list will co-exist in the Tool Palette area of the
main window as a separate tab.

(Delphi)

(C++)

You can insert one of these pre-defined code skeletons into your code by double-clicking the template
name in the Templates Window. You can also type the template name and press the Tab key to insert
the template. The XML files for the RAD Studio Live Templates are located in C:\Program
Files\Embarcadero\RAD Studio\9.0\ObjRepos\en\Code_Templates.

You can add your own code templates to the Templates Window. The names of live templates can
either represent the code in the template (such as class) or be the first word in the code (such as try),
and some template names are close (but not exact) versions of words you might type (such as forr).
Templates that you create (and templates provided by third party add-ins) are saved by default in
the \My Documents\RAD Studio\code templates\ directory.

Additional Live Code Templates details are available on the Embarcadero DocWiki at
http://docwiki.embarcadero.com/RADStudio/en/Live_Templates.

Code Folding

Code folding lets you collapse or expand regions or blocks of code. Collapsing your code creates a
hierarchical view of the code and makes it easier to read and navigate. The collapsed code is not
deleted, but hidden from view until you expand it. Code folding is on by default.

To use code folding, click the plus (+) and minus (-) signs located on the left edge of the Code Editor:

 Click the plus (+) sign to expand the associated region of code.

http://docwiki.embarcadero.com/RADStudio/en/Live_Templates

E-Learning Series: Getting Started with Windows and Mac Development

Page 34

 Click the minus (-) sign to collapse the associated region of code.

To enable/disable code folding:

 Use the Code Folding check box on the Tools > Options > Editor Options dialog box.

 Use the keyboard shortcut Ctrl+Shift+K+O.

You can also use the context menu Fold command to fold specific types of regions, such as Types,
Methods, XML Doc comments (for Delphi), and the 'Nearest' region. The Fold and Unfold commands are
described in Code Editor Context Menu. For more information about code folding, including how to
create code folding regions, see Using Code Folding.

Refactoring

Refactoring is the process of improving your code without changing its external functionality. For
example, you can turn a selected code fragment into a method by using the extract method refactoring.
The IDE moves the extracted code outside of the current method determines the needed parameters,
generates local variables if necessary, determines the return type, and replaces the code fragment with
a call to the new method. Several other refactoring methods, such as renaming a symbol and declaring a
variable, are also available.

You will find additional information about refactorings for Delphi and C++ on the Embarcadero DocWiki
at http://docwiki.embarcadero.com/RADStudio/en/Refactoring_Overview and
http://docwiki.embarcadero.com/RADStudio/en/Refactoring_Code.

http://docwiki.embarcadero.com/RADStudio/en/Refactoring_Overview
http://docwiki.embarcadero.com/RADStudio/en/Refactoring_Code

E-Learning Series: Getting Started with Windows and Mac Development

Page 35

Sync Edit

The Sync Edit feature lets you simultaneously edit identical identifiers in selected code. For example, in a
procedure that contains three occurrences of label1, you can edit just the first occurrence and all the
other occurrences will change automatically. To use Sync Edit in the Code Editor, select a block of code
that contains identical identifiers.

Click the Sync Edit Mode icon that appears in the left gutter. The first identical identifier is
highlighted and the others are outlined. The cursor is positioned on the first identifier. If the code
contains multiple sets of identical identifiers, you can press the TAB key to move between each
identifier in the selection.

Begin editing the first identifier. As you change the identifier, the same change is performed
automatically on the other identifiers. By default, the identifier is replaced. To change the identifier
without replacing it, use the arrow keys before you begin typing.

When you have finished changing the identifiers, you can exit Sync Edit mode by clicking the Sync Edit
Mode icon, or by pressing the Esc key.

Note: Sync Edit determines identical identifiers by matching text strings; it does not analyze the
identifiers. For example, it does not distinguish between two like-named identifiers of different types in
different scopes. Therefore, Sync Edit is intended for small sections of code, such as a single method or a
page of text. For changing larger sections of code, consider using refactoring

To-Do Lists

A To-Do List records tasks that need to be completed for a project. After you add a task to the To-Do
List, you can edit the task, add it to your code as a comment, indicate that it has been completed, and
then remove it from the list. Set the cursor in the code editor where you want to place a To-Do List
item. Right Mouse Click and choose “Add To-Do Item…” from the context menu.

After you click the OK button the To-Do List Item is added as a comment in your source code. You can
view all of your To-Do List Items using the View > To-Do List menu item.

http://docwiki.embarcadero.com/RADStudio/en/File:SyncEdit.jpg

E-Learning Series: Getting Started with Windows and Mac Development

Page 36

You can filter the list to display only those tasks that interest you.

Keystroke Macros

You can record a series of keystrokes as a macro while editing code. After you record a macro, you can
play it back to repeat the keystrokes during the current IDE session. Recording a macro replaces the
previously recorded macro.

Bookmarks

Bookmarks provide a convenient way to navigate long files. You can mark a location in your code with a
bookmark and jump to that location from anywhere in the file.

When you set a bookmark, a book icon is displayed in the left gutter of the Code Editor. You can use up
to ten bookmarks, numbered 0 through 9, within a file.

You can drag-and-drop bookmark icons in the gutter of the Code Editor, and a moved bookmark has the
number of the original bookmark.

Block Comments

You can comment-out a section of code by selecting the code in the Code Editor and pressing CTRL+/
(slash). Each line of the selected code is prefixed with // and is ignored by the compiler. Pressing CTRL+/
adds or removes the slashes, based on whether the first line of the code is prefixed with //. When using
the Visual Studio or Visual Basic key mappings, use CTRL+K+C to add and remove comment slashes.

History List

The History Manager lets you see and compare versions of a file managed by the IDE, including:

 Multiple backup versions saved by the IDE

E-Learning Series: Getting Started with Windows and Mac Development

Page 37

 Your saved local changes

 The current buffer of unsaved changes for the active file.

You can also see Subversion information if your project or individual files are under version control by
Subversion. You can see version control information in the History Manager that originates from both
the IDE and Subversion:

 If the current file is under version control, all types of revisions are available in the History
Manager.

 If you are using Subversion, the Subversion Integration in the IDE provides the following
functionality that you can use inside the IDE:

o All the revisions that have been checked into the Subversion repository are available in
the History Manager.

o You can diff (compare) files and annotate specific versions of the file in the History
Manager.

o You can perform the standard source-control operations in the Project Manager, such
as Add to repository, Update, and Commit.

To open the History Manager, click the History tab, which is located in the center of the lower edge of
the IDE main window:

The History Manager contains three tabbed pages (Contents, Information, and Differences):

Contents - Displays the current and previous versions of the file selected in the dropdown list in the
toolbar of the History window. The Contents page contains two panes:

 Revision content: The top portion of the Contents page lists revisions of the active file.

 Columns include:
o Revision: Revision number of each revision of the active file
o Label: Either the Revision number or a specified label
o Date: The date of the revision
o Author: The name of the user who checked in the revision

 File display: The lower portion of the Contents page displays the contents of the active file.
Note: To see the Subversion log entries for a specific file:

o Hover the mouse over a revision (or) that is checked into Subversion.
o Click the Information tab.

Information - For the selected revision of the active file, displays the following:

 The Label (either the revision number or a specified label such as "Local file")

 The Comments entered with the commit of that revision

Differences - Displays the differences between the selected versions of the active file. The Differences
page contains three panes:

E-Learning Series: Getting Started with Windows and Mac Development

Page 38

 Differences From: Lists the revisions of the active file, including the current revision.

 To: Lists the revisions of the active file, including the current revision and any unsaved changes
in the buffer.

 File display: The lower portion of the Differences page displays the contents of the file being
diff'ed. Highlighting indicates the differences between the revisions selected in “Differences
From:” and the revisions selected in “To:”.

 (a large minus sign) marks source lines that were deleted.

 (a large plus sign) marks source lines that were added.

 You can set the colors to be used in the highlighting on the Differences tab by using the Tools >
Options > Editor Options > Color dialog box.

The Structure View, Delphi Class Explorer and C++ Class Explorer

E-Learning Series: Getting Started with Windows and Mac Development

Page 39

The Structure View, Delphi Class Explorer and C++ Class Explorer let you visually see the components,
classes and code used in your application. You can use them to display properties in the Object
Inspector, show relationships and navigate to the declarations in the code editor.

Structure View

The Structure View displays the hierarchy of the following:

 Source code or HTML displayed in the Code Editor. When displaying the structure of source
code or HTML, you can double-click an item to jump to its declaration or location in the Code
Editor.

 Components displayed on the Designer. When displaying components, you can double-click a
component to select it on the form.

 (Delphi)

The Structure view contains a toolbar for C++ application development that allows you to control how
the contents of the Structure view are displayed. It consists of the following buttons (from left to right):

 Sort Alphabetically - Sorts the contents of the Structure view alphabetically.

 Group by type - Groups items into folders by type in the Structure view.

E-Learning Series: Getting Started with Windows and Mac Development

Page 40

 Group by visibility - Groups class members into folders by visibility: public, protected, private,
and published. For C++, 'Classes' is a generic group that encompasses classes, structs, unions
and templates.

 Show function and variable type - Displays the type to the right of the member in the Structure
view.

 Filter by visibility (private, protected, public, _published) - Toggles the Structure view display
through four different visibility levels. You can selectively display several different combinations
of elements that were declared with the access specifiers “__published”, “public”, “protected”
and “private”.

 (C++)

If your code contains syntax errors, the errors are displayed in the Errors node in the Structure View.
Double-click an error to locate the corresponding source in the Code Editor. (Not applicable for C++
development.)

You can use the Structure View to view relationships between components and between database
objects. For example, if you add a panel component and a check box component to your form, they are
considered siblings. But if you use the Structure View and drag the check box on top of the panel icon,
the check box becomes the child of the panel component.

If you double-click a Designer component in the Structure View, the Code Editor opens to a place where
you can write an event handler for the component. You can control the content and appearance of
the Structure View by choosing Tools > Options > Environment Options > Explorer and changing the
settings.

Delphi Class Explorer

The Delphi Class Explorer makes it easy to navigate through your Delphi project unit files, viewing the
hierarchical structure of declared types, classes, interfaces, and namespaces. The Delphi Class
Explorer also automates the creation of members (fields, methods, properties).

E-Learning Series: Getting Started with Windows and Mac Development

Page 41

The Delphi Class Explorer window has three areas:

 The Search control occupies the upper line of the Delphi Class Explorer window. It contains the
lens icon.

 The Class View pane occupies the central part of the Delphi Class Explorer window.

 The Member List pane.

The Search control provides quick location of entities in the Class View pane. Type a string and all
entities in the Class View pane whose names match this string become highlighted. The first matched
entity becomes selected.

The Class View shows a tree structure of types, classes, interfaces, and namespaces declared directly in
your project.

The Member List displays local and global members (fields, properties, and methods) declared in a node
(class or interface) selected in the Class View.

To open the Delphi Class Explorer window, click the View > Delphi Class Explorer menu item. By
default, the Delphi Class Explorer window appears docked to the upper-left corner with the Structure
View.

The Delphi Class Explorer parses all unit files registered in an open project. The Delphi Class
Explorer uses the obtained information to order nodes (units, classes, interfaces, types) in the Class
View tree and to order members (fields, properties, and methods) displayed in the Member List.

E-Learning Series: Getting Started with Windows and Mac Development

Page 42

C++ Class Explorer

The C++ Class Explorer allows you to:

 Examine the class structure of your project

 Examine the declaration in the source for a selected element

 Create new fields, methods, and properties in managed units in your project

The C++ Class Explorer window includes a toolbar with buttons.

These buttons allow you to (left to right):

 Sort by types, either forward or reverse. Sorts the various types in the following order: Classes,
Interfaces, Structs, Enumerations, Typedefs, Methods and Variables. The reverse button sorts
individual types in the reverse order. In either case, the Type List displays the types in
alphabetical order (the default view).

 Sort alphabetically by name; forward (A-Z). The reverse button sorts backward (Z-A).

 Do not group types. Types are shown in a flat display, as root nodes, instead of being associated
with parent nodes (namespace, file, or Custom File Group nodes).

 Group types by inheritance hierarchy. Types are shown under their base type nodes; or flat, if
there's no base type.

E-Learning Series: Getting Started with Windows and Mac Development

Page 43

 Group types by their namespaces. Each node is represented by a namespace icon, and the types
in the namespace are listed under that icon.

 Group types by their files. Displays a file icon () for each file (.cpp, .h, or .hpp file), and lists the
elements defined in each file.

 Group types using custom file groups. Uses the default display groups, as well as any custom
groups that you have created.

 Refresh list of types. Parse modified source files and update type list.

 Cancel active browser compilations.

 Clear all browser information

 Add a new method to this class - opens the Add Method (C++) dialog box. Enabled only for
managed units.

 Add a new field to this class - opens the Add Field (C++) dialog box. Enabled only for managed
units.

 Add a new property to this class - opens the Add Property (C++) dialog box. Enabled only for
managed units.

 Configure custom file groups - opens the Explorer File Groups dialog box, enabling you to:
Create your own file groups in the Type List, Enable/disable the display of specific groups, and
establish the display order of the groups in the Type List.

 Show top-level typedefs in the type list. Default is Off.

 Show top-level enumerations in the type list. Default is On (shown).

 Show top-level functions in the type list. Default is Off.

 Show top-level (global) variables in the type list. Default is Off.

 Include inherited members. By default, the Member View includes inherited class members by
displaying the members of the ancestor type below the members of the selected type. For
example, TForm3 is followed by its ancestor type, TForm. When this button is not pressed, only
locally defined members are displayed. Default is On.

 Go to the declaration of the selected node. Opens the source in the Code Editor, and highlights
the declaration of the selected item.

 Go to the definition of this declaration. Opens the source in the Code Editor, and highlights the
definition of the selected item. The C++ compiler maintains information such as when each
symbol is first defined and when it is subsequently used. This information is used to perform the
Go to definition command.

At the top of the Type List is an incremental search field, indicated by a magnifying glass icon. As you
enter a string in the search field, the Type List adjusts to display only elements that contain that string.
The search matches the names of any contained elements (such as members of a class), even if the class
name itself does not contain the string.

The C++ Class Explorer window is separated into three panes:

 Type List - Shows a tree structure of types, classes, interfaces, and namespaces declared directly
in your project.

 Member View - Displays the members (fields, properties, and methods) of the type or types
currently selected in the Type List.

 Source/References/Graph Window - The three tabs display different information, as follows:
o Source tab displays the source code, and focuses on the declaration of the item most

recently selected in the Type List.

E-Learning Series: Getting Started with Windows and Mac Development

Page 44

o References tab lists the references to the symbols currently selected in the Type List.
Double-clicking an entry in the References tab opens the Code Editor window and
navigates to the reference.

o Graph tab displays graphical information about the items currently selected in the Type
List. For example, if you select a few classes in the Type List, the Graph tab displays the
hierarchy of the selected symbols.

You can set options for the C++ Class Explorer by using the Tools > Options > C++ Options > Class
Explorer.

E-Learning Series: Getting Started with Windows and Mac Development

Page 45

Project Manager, Build Configurations and Option Sets

Project Manager

The Project Manager, View > Project Manager, displays and organizes the contents of your current
project group and any project it contains. You can perform many important project management tasks,
such as adding, removing, and compiling files. The default location of the Project Manager is the upper
right corner of the IDE, but the window is dockable, as are many windows in the IDE.

Here is a partial list of the items that can appear in the Project Manager tree structure:

 Project group node

 Project node (typically an .exe file)

 Build Configurations node

 Build configuration (Debug, Release, or custom)

 Target Platforms node (only available for cross-platform applications such as a FireMonkey HD
Application or a cross-platform console application): OS X platform (Mac), Windows platform
(Win32), Windows platform (Win64)

 Output folder (from Show Project Output context menu command)

 Folder (such as Contains or Requires)

 Source code (.pas or .cpp) that does not contain a form.

 Source code (.pas or .cpp) that contains a form.

 Resource file (.res)

 Form file (.dfm)

 Header file (.h) (C++)

 Import library for a package (.bpi) (C++)

To work with projects, you can use the Project main menu or Right-click a project group in the Project
Manager view to display the context menu.

E-Learning Series: Getting Started with Windows and Mac Development

Page 46

Besides compiling projects, probably the most often used Project menu item is the Project > Options…
menu item. The pages of the Project Options dialog box enable you to verify and set project-specific
options.

E-Learning Series: Getting Started with Windows and Mac Development

Page 47

An option value is in boldface if the value differs from the value in its parent's configuration. To revert to
the parent configuration value, right-click the option text and click Revert on the context menu. If you
change option values, you can save your set of changes in a new configuration or a named option set.
You can switch to another configuration or load an option set into the active configuration. Target
options, the platform and build configurations and the Apply and Save buttons are located at the top of
the compiler-related options pages.

The Default option is a general option that appears on nearly every page in the Project Options dialog
box. Clicking Default saves the current settings on the page as the default for each new project. Note:
The Project Options dialog box is resizable.

E-Learning Series: Getting Started with Windows and Mac Development

Page 48

Build Configurations

Build configurations consist of options that you can set on all the build-related pages of the Project >
Options dialog box. Build configurations are saved in the project file (such as .dproj or .cbproj). The
Project Manager contains a Build Configurations node that lists the available build configurations:

Base, Debug, and Release are the three default build configurations:

 Base acts as a base set of option values that are used in all the configurations you subsequently
create. In the Project Manager, the Build Configurations node itself represents the Base
configuration.

 The Debug configuration enables optimization and debugging, as well as setting specific syntax
options.

 The Release configuration does not produce symbolic debugging information, and the codes is
not generated for TRACE and ASSERT calls, meaning the size of your executable is reduced.

You can change option values in any configuration, including Base. You can delete the Debug and
Release configurations, but you cannot delete the Base configuration. When you compile and save a
project, the files are saved in a directory whose name matches the name of the current build
configuration. Debug and Release directories exist by default, and a directory is created for any active
custom build configuration when you save a project.

You can create new build configurations by Right-Clicking on the Build Configurations node in the Project
Manager view and give it a name.

After you have created your new build configuration you can edit the Project options for it by using the
Project > Options… menu item or Right-Clicking and choosing the “Edit…” context menu choice.

Every project has an active build configuration associated with it, as well as any number of other inactive
build configurations that you have created. The name of the active build configuration is displayed in
parentheses at the top of the Build Configurations node in the Project Manager, and the active
configuration is also displayed in boldface in the list of available configurations in that node. The
Compile, Build, and Clean commands use the active build configuration for the project.

To activate a configuration, do either:

E-Learning Series: Getting Started with Windows and Mac Development

Page 49

 Double-click the configuration in the Project Manager.

 Right-click the configuration and select Activate from the context menu.

Each configuration, except Base, is based on another configuration from which it inherits its values.
The Debug and Release configurations inherit their values from Base.

Using the Configuration Manager, you can, in turn, create a new configuration based on any given
configuration, and the new configuration inherits its option values from its parent. After creating a
configuration, you can change its option values to whatever you want, and you can make it the active
configuration for a project or projects. You can also delete any configuration except Base.

Unless their values are changed, options inherit the values of their parent configuration. This inheritance
is not static: if the parent configuration changes, so do inherited values for all its children.

The default value of an option is its value in the parent configuration. You can revert an option to its
default value by clearing the value in the Project Options dialog box.

Option Sets

You can save a configuration's option values to a file as a named option set (an .optset file). You can
apply an option set to any configuration in any project. You also have the choice to apply an option set
by value (applying the option set's values at that one time only) or by reference (so that subsequent
changes to the option set are reflected in the configuration) or by value. To create or apply an option set
to a build configuration Right-Click on a build configuration node in the Project Window.

After you create a new option set you can Right-Click on the option set in the Project Window and
choose the “Edit…” context menu.

E-Learning Series: Getting Started with Windows and Mac Development

Page 50

Note that a build configuration is different from an option set, although they are related. Both consist of
sets of option values. The main distinction is that configurations are associated with projects, whereas
option sets are saved in files independent of projects. Build configuration values are stored in the
project file, so saving a project saves changes to its build configurations, but option sets are unaffected.
Changing a project's configurations and adding or deleting configurations does not affect option sets.
Similarly, saving option sets does not change build configurations.

Each project has its own list of configurations, independent of other projects. However, you can apply
any option set to any project. On the Project Options dialog box, the Build Configuration drop-down list
includes all the build configurations for that project - but does not include option sets. The Project
Manager, on the other hand, lists both configurations and referenced option sets under the Build
configurations node.

To see what Project Options are set for a Build Configuration that has an Option Set applied, Right-Click
on the build configuration node and choose the “Edit…” context menu item. Then click on any of the
plus signs on the right hand pane in the Project Options dialog to see which project option values come
from a build configuration and which project option values come from an option set.

E-Learning Series: Getting Started with Windows and Mac Development

Page 51

Note that configurations and option sets might not contain values for all possible project options - they
contain only the options that are different from the parent configuration. The Base configuration also
does not contain values for all possible options.

If an option value is not in a configuration, the IDE looks in its parent configuration, then the parent's
parent configuration, and so on. If not found in any of the configurations in the inheritance chain, the
value comes from the appropriate tool that is being configured.

For instance, if a configuration inheritance chain does not include a value for a particular compiler
option, the default value is specified by the compiler itself. When you save a configuration or option set,
only its values are saved - not values for every option.

Compiling and Running the Application

As you develop your application in the IDE, you can compile (or make), build, and run the application in
the IDE. All three operations can produce an executable (such as .exe, .dll, .obj, or .bpl). However, the
four operations differ slightly in behavior:

 Compile (Project > Compile) or, for C++, Make (Project > Make) compiles only those files that
have changed since the last build as well as any files that depend on them. Compiling or making
does not execute the application.

E-Learning Series: Getting Started with Windows and Mac Development

Page 52

 Build (Project > Build) compiles all of the source code in the current project, regardless of
whether any source code has changed. Building is useful when you are unsure which files have
changed, or if you have changed project or compiler options.

 Run (Run > Run or F9) compiles any changed source code and, if the compile is successful,
executes your application, allowing you to use and test it in the IDE including the use of the
Debugger.

 Run without Debugging (Run > Run Without Debugging or Shift-Control-F9) compiles the
program and executes the application without using the IDE and Debugger.

To delete all of the generated files from a previous build, use the Clean command, which is available on
the context menu of the project node in the Project Manager (Clean Project is also available in the
Project menu for C++ projects) .

To display the current compiler options in the Messages window each time you compile your project,
choose Tools > Options > Environment Options and select Show command line. The next time you
compile a project, the Messages window displays the command used to compile the project and the
response file. The response file lists the compiler options and the files to be compiled.

After you compile a project, you can display information about it by choosing Project > Information. The
resulting Information dialog box displays the number of lines of source code compiled, the byte size of
your code and data, the stack and file sizes, and the compile status of the project.

As you compile a project, compiler messages are displayed in the Messages window. For an explanation
of a message, select the message and press F1.

When you explicitly build a project, the IDE calls MSBuild, the Microsoft build engine. The build process
is entirely transparent to developers. MSBuild is called as part of the Compile, Build, Run and Run
Without Debugging commands available on the Project and Run menus. However, you can also invoke
MSBuild.exe from the command line or by using the RAD Studio Command Prompt, available on
the Start menu.

If you enable Background Compilation on the Environment Options dialog box, you can run compile and
build commands as background threads. See the Embarcadero DocWiki at
http://docwiki.embarcadero.com/RADStudio/en/Background_Compilation for additional information
about setting the background compilation priority, working while background compilation is taking place
and restrictions while background compilation is running.

Debugging the Application

RAD Studio includes a Win32, Win64 and OSX Debugger. The IDE automatically uses the appropriate
debugger based on the active project type. Cross-platform debugging within a project group is available
using the PAServer and Remote Debugger that are included in RAD Studio as separate installs (see
lesson 1 for setup information).

The integrated debuggers let you find and fix both runtime errors and logic errors in your RAD Studio
application. Using the debuggers, you can step through code, set breakpoints and watches, and inspect

http://docwiki.embarcadero.com/RADStudio/en/Background_Compilation

E-Learning Series: Getting Started with Windows and Mac Development

Page 53

and modify program values. As you debug your application, the debug windows are available to help you
manage the debug session and provide information about the state of your application.
The Debug Inspector enables you to examine various data types such as arrays, classes, constants,
functions, pointers, scalar variables, and interfaces. To use the Debug Inspector, select Run > Inspect.

The Debug Desktop is the layout that the IDE uses when you are running your application in Debug
mode (F9 in the default key mapping). There is a default Debug Desktop, but you can alternatively select
any of the saved desktops to be the Debug Desktop. To set the Debug desktop:
Choose either of the following:

 View > Desktops > Set Debug Desktop

 in the Desktop Toolbar

Stepping Through Code

Stepping through code lets you run your program one line of code at a time. After each step, you can
examine the state of the program, view the program output, modify program data values, and continue
executing the next line of code. The next line of code does not execute until you tell the debugger to
continue.

The Run menu provides the Trace Into and Step Over commands. Both commands tell the debugger to
execute the next line of code. However, if the line contains a function call, Trace Into executes the
function and stops at the first line of code inside the function. Step Over executes the function and then
stops at the first line after the function.

The main toolbar also contains buttons for debugging operations (from left to right):

 Run Without Debugging (Shift-Ctrl-F9)

 Run With Debugging (F9)

 Pause the application

 Program Reset (Ctrl-F2)

 Trace Into (F7)

 Step Over (F8)

 Run Until Return (Shift-F8)

Evaluate Modify

The Evaluate/Modify functionality allows you to evaluate an expression. You can also modify a value for
a variable and insert that value into the variable. The Evaluate/Modify functionality is customized for the
language you are using:

 For a C++ project, the Evaluate/Modify dialog accepts only C++ expressions.

http://docwiki.embarcadero.com/RADStudio/en/Key_Mappings
http://docwiki.embarcadero.com/RADStudio/en/Select_Debug_Desktop
http://docwiki.embarcadero.com/RADStudio/en/Desktop_Toolbar
http://docwiki.embarcadero.com/RADStudio/en/File:DebugDesktop.jpg

E-Learning Series: Getting Started with Windows and Mac Development

Page 54

 For a Delphi project, the Evaluate/Modify dialog accepts only Delphi expressions.

Breakpoints

Breakpoints pause program execution at a certain point in the program or when a particular condition
occurs. You can then use the debugger to view the state of your program, or step over or trace into your
code one line or machine instruction at a time. The debugger supports four types of breakpoints:

 Source breakpoints pause execution at a specified location in your source code.

 Address breakpoints pause execution at a specified memory address.

 Data breakpoints allow you to pause execution when the contents changes for memory at a
particular address. Data breakpoints are available only for the Win32 debugger. Data
breakpoints are automatically disabled when a debugging session ends, because the address of
a variable can change from one debug session to the next. To re-use a data breakpoint during a
subsequent debugging session, you need to re-enable the data breakpoint after your debugging
session begins.

 Module load breakpoints pause execution when the specified module loads.

During a debugging session, any line of code that is eligible for a breakpoint is marked with a blue dot
 in the left gutter of the Code Editor.

You can also set breakpoints on frames displayed in the Call Stack window. The breakpoint icons in
the Call Stack window are similar to those in the Code Editor, except that the blue dot in the Call
Stack indicates only that debug information is available for the frame, not whether a breakpoint can be
set on that frame.

Breakpoints are displayed in the Breakpoint List window, available by selecting View > Debug windows
> Breakpoints.

You can drag breakpoint icons and drop them in the Code Editor window; a moved breakpoint retains
the settings of the original breakpoint. The following icons are used to represent breakpoints in
the Code Editor gutter.

To set a source breakpoint

 To pre-fill the line number in the dialog box, click the line of source in the Code Editor at the
point where you want to stop execution.

 Choose Run > Add Breakpoint > Source Breakpoint to display the Add Source Breakpoint dialog
box. Tip: To change the Code Editor gutter, choose Tools > Options > Editor Options >
Display and adjust the Gutter width option.

 In the Add Source Breakpoint dialog box, the file name is prefilled with the name of the file,
and Pass count is set to 0 (meaning that the breakpoint fires on the first pass). In the Line
number field, enter the line in the Code Editor where you want to set the breakpoint.

http://docwiki.embarcadero.com/RADStudio/en/File:BlueDot.bmp
http://docwiki.embarcadero.com/RADStudio/en/File:BlueDot.bmp

E-Learning Series: Getting Started with Windows and Mac Development

Page 55

 To apply a condition to the address breakpoint, enter a conditional expression in
the Condition field. The conditional expression is evaluated each time the breakpoint is
encountered, and program execution stops when the expression evaluates to True.

 To associate the source breakpoint with a breakpoint group, enter the name of a group or select
from the Group drop-down list.

 To set any of the Advanced options click the “Advanced >>” button in breakpoint properties
dialog.

E-Learning Series: Getting Started with Windows and Mac Development

Page 56

Advanced source breakpoints allow you to Break, Ignore/Handle exceptions, Log Messages, Evaluate an
Expression (including call a function with side effects, set a variable), and Enable/Disable groups of
breakpoints.

Note: To quickly set a breakpoint on a line of source code, click the left gutter of the Code Editor next to
the line of code where you want to pause execution.

To set an address breakpoint

 Run your application in Debug mode (for example, use F9, F8, F7, or F4).

 Choose Run > Add Breakpoint > Address Breakpoint to display the Add Address
Breakpoint dialog box.

 In the Address field, enter the address in memory (such as $00011111) at which you want to set
the breakpoint.

 To apply a condition to the address breakpoint, enter a conditional expression in
the Condition field. The conditional expression is evaluated each time the breakpoint is
encountered, and program execution stops when the expression evaluates to true.

 To specify that the address breakpoint will only fire after a number of passes, enter the number
in the Pass count field.

 To associate the address breakpoint with an existing breakpoint group, enter the group name in
the Group field, or select the name of an existing group from the drop-down list.

 To set any of the Advanced options, see the Embarcadero DocWiki’s “Add Address Breakpoint
or Add Data Breakpoint” section at
http://docwiki.embarcadero.com/RADStudio/en/Add_Address_Breakpoint_or_Add_Data_Break
point.

Note: You can also set an address breakpoint in the CPU view or the Disassembly view by clicking in the
gutter.

To set a data breakpoint

 Run your application in Debug mode (for example, use F9, F8, F7, or F4).

http://docwiki.embarcadero.com/RADStudio/en/Add_Address_Breakpoint_or_Add_Data_Breakpoint
http://docwiki.embarcadero.com/RADStudio/en/Add_Address_Breakpoint_or_Add_Data_Breakpoint

E-Learning Series: Getting Started with Windows and Mac Development

Page 57

 Choose Run > Add Breakpoint > Data Breakpoint to display the Add Data Breakpoint dialog
box.

 In the Address field, enter the address of the data you want to function as the data breakpoint.

 In the Length field, specify the length of the data operand that is to constitute the breakpoint.
Note that a warning is displayed for the following issues:

 The length of the data breakpoint should not cross an even-byte boundary. (A data
breakpoint with a 1-byte length has no alignment problems, but 2-byte and 4-byte data
breakpoints might cover more or fewer addresses than you intend.)

 The data breakpoint should not be set on a stack location. (The breakpoint might be hit
so often that the program cannot run properly.)

 To apply a condition to the breakpoint, enter a conditional expression in the Condition field. The
conditional expression is evaluated each time the breakpoint is encountered, and program
execution stops when the expression evaluates to True.

 To specify that the breakpoint only fires after a number of passes, enter the number in the Pass
count field.

 To associate the data breakpoint with an existing breakpoint group, enter the group name in
the Group field, or select the name of an existing group from the drop-down list.

 To set any of the Advanced options, see the Embarcadero DocWiki’s “Add Address Breakpoint
or Add Data Breakpoint” section at
http://docwiki.embarcadero.com/RADStudio/en/Add_Address_Breakpoint_or_Add_Data_Break
point.

To set a module load breakpoint

Choose Run > Add Breakpoint > Module Load Breakpoint to display the Add Module Load
Breakpoint dialog box.

http://docwiki.embarcadero.com/RADStudio/en/Add_Address_Breakpoint_or_Add_Data_Breakpoint
http://docwiki.embarcadero.com/RADStudio/en/Add_Address_Breakpoint_or_Add_Data_Breakpoint

E-Learning Series: Getting Started with Windows and Mac Development

Page 58

Do either of the following:

 In the Module name field, enter the name of the DLL, package, or other module type that you
want to monitor, or select a name from the drop-down list, and click OK.

 Click Browse to open the Select Module dialog box and browse modules from another target
platform. Click the Modules dropdown next to the File Name field, and select the type of
modules you want to see:

 Modules (*.dll, *.ocx, *.bpl, *.exe, *.dylib) {both Windows and Mac modules}

 Windows Modules (*.dll, *.ocx, *.bpl, *.exe) {only Windows modules}

 Mac OS X Modules (*.dylib) {only Mac modules}

 Any file *.*

Click Open to open the module you want. The name is automatically inserted in the Add or Edit Module
Load Breakpoint dialog box.

Note: You can also use the Modules Window to set a module load breakpoint.
When the module you specify is loaded during program execution, the module load breakpoint is hit,
and program execution pauses.

To persist breakpoints from session to session

If you set the Autosave Project desktop option, breakpoints you set for a project will persist from
session to session.

1. Set the breakpoints (and watches) that you want to keep from session to session.

2. Select Tools > Options > Environment Options.

3. Enable Autosave Project desktop. When you exit the product or close your project, your
desktop settings are saved to a .dsk file. When you reopen your project, the product reads the
.dsk file and restores your saved desktop, breakpoints, watches and open files.

You need to delete the .dsk file when you no longer want the saved set of breakpoints to persist in your
project (or any other items controlled by the Autosave Project desktop option).

To modify a breakpoint

1. Open the Breakpoint List Window by selecting View > Debug Windows > Breakpoints. Right-
click the icon for the breakpoint you want to modify. For a source breakpoint, you can right-click
the breakpoint icon in the Code Editor gutter, and choose Breakpoint Properties.

E-Learning Series: Getting Started with Windows and Mac Development

Page 59

2. Set the options in the Breakpoint Properties dialog box to modify the breakpoint. For example,
you can set a condition, create a breakpoint group, or specify an action that is to occur when
execution reaches the breakpoint.

3. Click Help for more information about the options in the dialog box.
4. Click OK.

To create a breakpoint group

1. Open the Breakpoints List by choosing View > Debug Windows > Breakpoints.
2. Right-click the breakpoint and choose Breakpoint Properties.
3. To create a breakpoint group, enter a group name in the Group field. To add the breakpoint to

an existing group, select a name from the drop-down list box.
4. Click OK.

To enable or disable a breakpoint or a breakpoint group

1. Right-click the breakpoint icon in either the Code Editor or the Breakpoint List Window and
choose Enabled to toggle between enabled and disabled. In the Breakpoint List, you can click
the checkbox at the left of the icon.

2. To enable or disable all breakpoints, right-click a blank area (not on a breakpoint) in
the Breakpoint List window and choose Enable All or Disable All.

3. To enable or disable a breakpoint group, right-click a blank area (not on a breakpoint) in
the Breakpoint List window and choose Enable Group or Disable Group.

Tip: Press the Ctrl key while clicking a breakpoint in the Code Editor gutter to toggle between enabled
and disabled. Disabling a breakpoint or breakpoint group prevents it from pausing execution, but
retains the breakpoint settings, so that you can enable it later.

To create a conditional breakpoint

1. Choose Run > Add Breakpoint and select the type of breakpoint you want from the submenu.
2. Complete the fields in the dialog box as described in the procedure given earlier for that

breakpoint type.
3. In the Condition field, enter a conditional expression to be evaluated each time this breakpoint

is encountered during program execution. The breakpoint pauses execution when the
expression evaluates to True.

4. Complete other fields as appropriate.
5. Click OK.

Conditional breakpoints are useful when you want to see how your program behaves when a variable
falls into a certain range or what happens when a particular flag is set.

E-Learning Series: Getting Started with Windows and Mac Development

Page 60

If the conditional expression evaluates to True (or not zero), the debugger pauses the program at the
breakpoint location. If the expression evaluates to False (or zero), the debugger does not stop at the
breakpoint location.

To set a breakpoint on a specific thread

1. Choose Run > Add Breakpoint and select the type of breakpoint you want from the submenu.
2. Complete the fields in the dialog box as described in the procedure given earlier for that

breakpoint type.
3. In the Thread field, enter or select the thread number (for numbered threads) or thread name

(for named threads).
4. Complete other fields as appropriate.
5. Click OK.

To associate actions with a breakpoint

1. On the Breakpoint List Window, right-click the breakpoint and choose Breakpoint Properties.
2. Click Advanced to display additional options.
3. Check the actions that you want to occur when the breakpoint is encountered. For example, you

can specify an expression to be evaluated and write the result of the evaluation to the Event
Log.

4. Click OK.

To change the color of the text at the execution point or the color of

breakpoints

1. Choose Tools > Options > Editor Options > Color.
2. In the code sample window, select the appropriate language tab. For example, to change the

breakpoint color for Delphi code, select the Delphi tab.
3. Scroll the code sample window to display the execution and breakpoint icons in the left gutter of

the window.
4. Click anywhere on the execution point or breakpoint line that you want to change.
5. Use the Foreground Color and Background Color drop-down lists to change the colors associated

with the selected execution point or breakpoint.
6. Click OK.

Note: You can also set breakpoints in the Breakpoint List, the CPU window (and the Disassembly view),
the Call Stack view, and the Modules window.

Watches

Watches let you track the values of program variables or expressions as you step over or trace into your
code. As you step through your program, the value of the watch expression changes if your program
updates any of the variables contained in the watch expression.

E-Learning Series: Getting Started with Windows and Mac Development

Page 61

To add variables or expressions to the Watch Window, select the variable or expression and hit Ctrl-F5
or Right-Mouse-Click and choose Debug > Add Watch at Cursor from the context menu.

Debug Windows

The following debug windows are available to help you debug your program. By default, most of the
windows are displayed automatically when you start a debugging session. You can also view the
windows individually by selecting View > Debug Windows.

Each window provides one or more right-click context menus. The F1 Help for each window provides
detailed information about the window and the context menus.

 Breakpoint List - Displays all of the breakpoints currently set in the Code Editor or CPU window.

 Call Stack - Displays the current sequence of function calls.

 Watch List - Displays the current value of watch expressions based on the scope of the execution
point.

 Local Variables - Displays the current function's local variables, enabling you to monitor how
your program updates the values of variables as the program runs.

 Modules - Displays processes under control of the debugger and the modules currently loaded
by each process. It also provides a hierarchical view of the namespaces, classes, and methods
used in the application.

 Threads - Displays the status of all processes and threads of execution that are executing in each
application being debugged. This is helpful when debugging multi-threaded applications. For
Windows Vista, the Threads Status includes a Wait Chain column that lists thread blockages and
deadlocks.

 Event Log - Displays messages that pertain to process control, breakpoints, output, threads, and
module.

 CPU Windows - Displays the low-level state of your program, including the assembly instructions
for each line of source code and the contents of certain registers.

 FPU - Displays the contents of the Floating-point Unit and SSE registers in the CPU.

E-Learning Series: Getting Started with Windows and Mac Development

Page 62

E-Learning Series: Getting Started with Windows and Mac Development

Page 63

E-Learning Series: Getting Started with Windows and Mac Development

Page 64

Summary, Looking Forward, To Do Items, Resources, Q&A and the Quiz

In Lesson 3 you learned how to leverage the features of the Integrated Development Environment (IDE)
to help you build successful applications. The IDE has an extensible architecture allowing you to
customize your working desktops, control the writing of code, explore the structure of your applications,
rapidly create the UI of your program, add third party tools and create and install components.

Lesson 4 will cover an introduction to the Delphi and C++ programming languages. These modern
programming languages have a wide range of capabilities that are well documented in numerous books,
videos and online tutorials. Lesson 4 will focus on the language features that support RAD, visual and
component based development.

Until the next lesson, here are some things you can try, articles to read and videos to watch to enhance
what you learned in this lesson and to prepare you for the next lesson.

To Do Items

Explore the rest of the IDE that wasn’t covered in Lesson 3. Take a look at each of the categories and
items in the Object Repository and familiarize yourself with project and file types. Customize your File >
New menu to have the items that you will most often use in your daily work. Create your own desktop
layouts and save them for later use. Load some of the sample projects that are included with RAD
Studio and explore the View menu when a project is loaded. Set breakpoints in the sample code and
run the applications with debugging to explore the debugger capabilities (unless you write absolutely
100% perfect code all of the time, you’ll live part of your life in the debugger).

Links to Additional Resources

 The course landing page URL is http://www.embarcadero.com/firemonkey/firemonkey-e-
learning-series

 Download and Watch Alistair Christie’s CodeRage III video – 100 Delphi IDE Tips and Hints:
http://cc.codegear.com/Download.aspx?id=26411

 Read about new IDE capabilities that have appeared in the XE2, XE and 2010 releases:
http://docwiki.embarcadero.com/RADStudio/en/What's_New_in_Delphi_and_C%2B%2BBuilder
_2010, http://docwiki.embarcadero.com/RADStudio/en/IDE_Changes_for_XE,
http://docwiki.embarcadero.com/RADStudio/en/IDE_Changes_for_XE2

 Watch the debug visualizers video - http://www.youtube.com/watch?v=qGE8WQQoKho

Q&A:

Here are some of the answers for the questions I’ve received (so far) for this lesson. I will continue to

update this Course Book during and after course. (To be added after the lesson webinars take place).

http://www.embarcadero.com/firemonkey/firemonkey-e-learning-series
http://www.embarcadero.com/firemonkey/firemonkey-e-learning-series
http://cc.codegear.com/Download.aspx?id=26411
http://docwiki.embarcadero.com/RADStudio/en/What's_New_in_Delphi_and_C%2B%2BBuilder_2010
http://docwiki.embarcadero.com/RADStudio/en/What's_New_in_Delphi_and_C%2B%2BBuilder_2010
http://docwiki.embarcadero.com/RADStudio/en/IDE_Changes_for_XE
http://docwiki.embarcadero.com/RADStudio/en/IDE_Changes_for_XE2
http://www.youtube.com/watch?v=qGE8WQQoKho

E-Learning Series: Getting Started with Windows and Mac Development

Page 65

Q: VCL versus FireMonkey application, which one is better in terms of less memory usage?
A: VCL and FireMonkey applications grow and shrink based on which units you link into hour application
executable. If you want to have smaller executables you can choose to build with or without runtime
packages.

Q: You showed how to create and save new desktop layout? But is there a way to delete one you have
created and don't want to keep. I have spent a big deal of time trying to figure that out by myself.
A: Use the View > Desktops > Delete… menu item to remove a saved desktop layout.

Q: When folding source code, in earlier versions, a print still printed on printer the unfolded code. Is it
now possible to have a print of folded code?
A: Printing the source file will print the file contents. If you want to print the folded code, capture the
code editor with a screen capture tool.

Q: I have XE2 Professional installed but I don't have the Xcode under tools is not shown.
A: Are you referring to 'dpr2xcode' in the Tools menu. David added that himself, by customizing the
Tools menu – this is covered in Lesson 1.

Q: Regarding the question on how to print debug info: You can use Code Insight as an awesome logging
tool. It support saving everything
A: Yes, Code Insight Express Edition from Raize Software is included in XE2.

Q: Sometimes we use ExtractFilePath and Application.ExeName to navigate through external resources.
.ExeName property is not available in FireMonkey. What do we use in order to get current directory?
A: The System.IOUtils unit contains classes and methods that provide access to directory, path,
attributes and other folder and file information. You can find more information about IOUtils on the
Embarcadero DocWiki at http://docwiki.embarcadero.com/Libraries/en/System.IOUtils.

Q: I like the fact that you can move the current position by dragging the little arrow, while the app is
running.
A: Yes, you can change the execution point in your code by dragging the execution arrow on a
breakpoint to another source line. But, be careful that you understand any side effects that might take
place because of you changing the execution point.

Q: When David uses the term FireMonkey HD, what does the HD stand for?
A: High Definition. Just like with HDTV, HD uses for iPad as opposed to iPhone, etc.

http://docwiki.embarcadero.com/Libraries/en/System.IOUtils

E-Learning Series: Getting Started with Windows and Mac Development

Page 66

Q: Custom layouts work great with more than one monitor!
A: Thanks! Good feedback!

Q: I think this question comes up a lot. Can you verify? I have Xcode 4.2.1 installed and working with
FireMonkey and Free Pascal. All is well. Can I install the latest version of Xcode without losing any
FireMonkey capabilities? Are there any tips tricks I should watch for or do? Thank you so much!
A: If you don't *need* to install Xcode 4.3.x, don't. It'll save you some troubles for now. If you have to
install it, make sure you do NOT uninstall 4.2.x when the 4.3.x installer asks - because it will remove the
entire /Developer directory without asking - nuking FPC/FMI in the process causing you a lot of re-
installation pain.

Q: Breakpoints are fine... but what about exceptions, e.g. divide by 0. What do I have to set so that I'm
pointed to the failing statement?
A: You can choose to have the debugger break on exceptions using the Tools > Options > Debugger
Options settings for Embarcadero Debuggers > Language Exceptions and Embarcadero Debuggers >
Native OS Exceptions.

Additional information is available on the Embarcadero DocWiki at
http://docwiki.embarcadero.com/RADStudio/en/Debugger_Exception_Notification.

http://docwiki.embarcadero.com/RADStudio/en/Debugger_Exception_Notification

E-Learning Series: Getting Started with Windows and Mac Development

Page 67

Q: I was trying to drag from toolbar a TLabel component on a TTabItem control within a TTabControl.
However, the TLabel did not stay with the specific TTabItem control. How do you get this association to
work?
A: I added a TTabControl onto my form. I added three TTabItem(s) to the TTabControl using the
component editor (Right-Mouse-Click on the TTabControl in the form designer). I added TLabel
components into a TTabControl and the TLabel(s) were placed in the currently selected TTabItem –
which was the first TTabItem. You use the Structure view to move components to other TTabItems.

Q: You did something interesting when you placed a FireMonkey TLabel inside a FireMonkey edit box,
then moved the TLabel outside the edit box to place it relative to the edit box. The edit box is
apparently not a real container like a VCL TPanel. What would you do if you wanted a label to stay
outside of a Panel, and move with the panel?
A: I tried compositing a TLabel with a TPanel using FireMonkey and it worked. First, I added a TPanel to
my FireMonkey HD application. Next, I added a TLabel to the form and in the Structure view I dragged
the TLabel into the TPanel. Then, in the form designer, I dragged the TLabel outside the TPanel. Then,
when I dragged the TPanel to a different location in the form designer, the TLabel followed with the
TPanel. With FireMonkey you can choose to composite a component inside another component or
place it outside of the component and it still is parented to that component.

Q: What happens if you use a Windows statement that is not supported on OSX. One example may be
Application.ProcessMessages used to update the display prior to a long process.
A: The TApplication class is included in the runtime library. You can call ProcessMessages and use other
TApplication class methods in your FireMonkey applications for Windows and Mac.

Q: Is there any way to keep the non-visual components from cluttering up the form?
A: There isn’t any place to put non-visual components on a form that is out of the way – other than at
the extreme borders. You can choose to put non-visual components, like Data Access components, in a
Data Module.

Q: How are deployment package files built?
A: You can create design time and run time packages with Delphi and C++. Use the File > New > Other…
menu item and choose “Package” from the “C++Builder Projects” or “Delphi Projects” categories.
Additional information is available on the Embarcadero DocWiki at
http://docwiki.embarcadero.com/RADStudio/en/Working_with_Packages_and_Components_-
_Overview.

Q: How do you create a custom control with the possibility to edit its style later?
A: You can create FireMonkey components using the Component > New Component menu to create a
new component from any installed FireMonkey components as well as the base TFMXObject class.
Once your new component is implemented and installed, you can use it in your applications and have
full access to changing the style as needed.

http://docwiki.embarcadero.com/RADStudio/en/Working_with_Packages_and_Components_-_Overview
http://docwiki.embarcadero.com/RADStudio/en/Working_with_Packages_and_Components_-_Overview

E-Learning Series: Getting Started with Windows and Mac Development

Page 68

You can read more about creating FireMonkey components on the Embarcadero DocWiki at
http://docwiki.embarcadero.com/RADStudio/XE2/en/FireMonkey_Components_Guide.

Q: Why would I continue to use frames rather than composite components?
A: With FireMonkey you can composite components inside other components. So, there is no need for
frames containing components. You can create super-components with FireMonkey and reuse them in
your applications.

Q: Is there a visual cue that shows that a derived form has been changed? This would be REALLY helpful.
A: No there isn’t a visual cue that properties are changed from their inherited values. You can revert a
changed property back to its inherited value by selecting the component on the inherited form and
choose “Revert from Inherited” in the context menu.

Q: When a project is saved to repository, is it transferred when we upgrade to the next compiler? E.g.,
projects stored to the XE repository are migrated to XE2?
A: You will need to copy over the XML files for the template projects from your previous version’s
repository folder.

Q: Will FireMonkey be any help in Web Application Development?
A: FireMonkey is used to create native code applications that run on Windows, Mac and iOS using the
CPU and GPU. FireMonkey is not used for building browser based applications or server side
applications. Your client applications can use Internet protocols to connect to Web services and
DataSnap server multi-tier applications. You can leverage FireMonkey and the runtime library non-
visual components to do server side processing for example with image processing.

http://docwiki.embarcadero.com/RADStudio/XE2/en/FireMonkey_Components_Guide

E-Learning Series: Getting Started with Windows and Mac Development

Page 69

Q: Why is this webinar more focused on getting started with C++ Builder and not the “in-depth” and
“what’s new” in FireMonkey?
A: Because it's targeted to new developers and people using the trial. We have many other webinars
and videos for the “what’s new in FireMonkey” and advanced topics like FireMonkey 3D and iOS
development. The lessons will also get more advanced later in the series. This is lesson 3 of 9 lessons
(with more being planned for the future – send me any ideas you have for advanced topics you’d like to
see).

Q: Will this webinar have more 3D FireMonkey applications and examples?
A: FireMonkey 3D will be covered in Lesson 7.

Q: What email account to use for the extension of the FireMonkey trial period?
A: Send an email to davidi@embarcadero.com

Q: When will FireMonkey support iOS?
A: FireMonkey for iOS is already supported for Delphi using the Windows IDE, Free Pascal compiler for
ARM processor and Xcode (See lesson 1 for setup and configuration). John Thomas, Director of Product
Management for Developer Tools recently wrote an EDN article titled “Coming soon to a RAD IDE near
you, the future of C++ - 64bit, C++11, ARM, iOS and Android” that outlines our plans for C++ support for
Win64, iOS and Android. You’ll find the article on EDN at http://edn.embarcadero.com/article/42275.

If you have any additional questions – send me an email - davidi@embarcadero.com

Self Check Quiz

1) Which view is not included in RAD Studio’s View Menu?

a) Project Manager
b) Desktops
c) Welcome Page
d) Structure
e) Rooms
f) Object Inspector

2) Which desktop layout is not one of the standard built-in layouts?

a) <none>
b) Default Layout
c) Debug Layout
d) Classic Undocked
e) Classic Docked

3) Which view contains an outline of the components and classes used in a form?

http://edn.embarcadero.com/article/42275
mailto:davidi@embarcadero.com

E-Learning Series: Getting Started with Windows and Mac Development

Page 70

a) Project Manager
b) Tool Palette
c) Object Inspector
d) Structure
e) Debug Windows
f) File Explorer

Answers to the Self Check Quiz:

1e, 2e, 3d

