
Copyright Atozed Software

IntraWeb Manual

IntraWeb

A revolutionary approach to web application development

"Makes development of web applications as easy as falling
off a log..."

PC Plus Magazine, June 2002

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written
permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly
by this document.

IntraWeb

Table of Contents

Foreword 1

Part I Welcome 3

... 31 Other Documentation

... 32 How IntraWeb Works

... 33 Limitations of the Evaluation Version

... 44 Technical Support

... 45 License

... 56 Credits, Acknowledgements and Copyrights

... 67 Requirements

.. 6Overview

.. 7Supported Browsers

.. 8Development Environments

Part II What's New 10

... 101 Overview

... 112 PDA Support

Part III Migration Guide 13

... 131 6.0 to 7.0

... 132 5.1 to 6.0

... 143 5.0 to 5.1

Part IV Installation 18

... 181 Installation of License Keys

... 182 Visual Studio.Net

... 183 Delphi / C++ Builder

... 184 Kylix

... 185 Upgrading to a new version

.... 19Delphi 7 Users

Part V Demos 21

... 211 Quick Start

... 212 Building A Demo Step By Step

... 313 Features

... 314 Guess

... 325 GuessWB

... 326 GuessMulti

... 327 FishFact

IntraWeb ManualI

Copyright Atozed Software

... 328 FishFactDM

... 329 Phoenitics Customer Profiler

... 3210 StandAloneSSL

... 3211 WebSnapSurvey

... 3212 Custom StandAlone

... 3313 Back Button

... 3314 Page Forms

... 3315 FishMarket

... 3316 Die, Fly ! Die !

... 3417 WebMail32

Part VI Debugging 36

... 361 Getting Started

... 362 Debug Output

... 363 Detecting Errors on Startup

... 364 Command Line Parameters

Part VII Development 39

... 391 Rethinking the User Interface

... 392 Writing Your First IntraWeb Application

... 413 Images and Graphics

... 424 Extending IntraWeb

... 425 Working with COM

... 436 Working with ClientDataSet Components

... 437 Working with PDA

... 448 Miscellaneous

Part VIII Form Management 47

... 471 Working with Forms

... 472 Update Mode

... 483 IntraWeb Frame

... 494 Intraweb User Control

... 495 Visual Form Inheritance

... 496 Managing Forms

... 507 Form List

... 508 Showing Forms

... 519 Hiding Forms

... 5110 Destroying Forms

... 5111 Passing Data Between Forms

... 5712 Note for C++ Builder users

IIContents

II

Copyright Atozed Software

Part IX State Management 59

... 591 Inherent State

... 592 Restrictions

... 593 Safe Storage

... 624 Complex State and the Back Button

.... 64Using the OnBackButton Event

Part X Session Management 66

... 661 WebApplication Object

... 662 Referencing the Session

... 663 Lifetime

... 674 Implementation

... 675 Storing Additional Data

... 676 Session Related Events

... 687 Memory Consumption

... 688 Component Reference

... 689 How does Session Management Work?

.... 68URL

.... 69Cookies

.... 69Hidden Fields

Part XI Layout Managers and Templates 71

... 711 What is a Layout Manager?

... 712 Form Layout

... 713 HTML Templates

... 734 System Templates

Part XII Server Controller 75

... 751 What is the Server Controller?

... 752 Properties

Part XIII Writing Custom Components 77

... 771 Overview

... 772 Under Construction

... 773 Source Code

... 774 Core Server

... 775 Third Party Program

Part XIV Javascript 79

... 791 Overview

... 792 Areas of Implementation

IntraWeb ManualIII

Copyright Atozed Software

... 793 Using ScriptEvents

.... 82Writing JavaScript events

.... 84More Script Events

... 854 Javascript Functions

.... 85Common Functions

Part XV Page Mode 88

... 881 Introduction to Page Mode

... 882 Working with Page Mode

... 923 IntraWeb and Websnap

.... 93Creating the Demo

.... 99Running the Demo

... 1024 IntraWeb Pages (IWP)

. 102Introduction to IWP

...... 103Creating the Project

. 103Preparing the server

. 105Creating an IWP page

. 106Creating an IWP form

...... 106Deploying the files

Part XVI IntraWeb Caching Mechanism 109

... 1091 Caching Files

Part XVII Deployment 111

... 1111 Installation

. 111Overview

. 111External Files

. 111Permissions

. 112ISAPI

..... 112Deploying in IIS

..... 115ISAPI Utilities

..... 115ISAPI Hosting

..... 116Common ISAPI Issues

..... 117Useful ISAPI links

... 1172 Methods

. 117Notes

. 117Stand Alone

. 118ISAPI / NSAPI / Apache DSO / CGI / Win-CGI

. 119Windows Service

... 1193 Launch URLs

. 119Linking to IntraWeb Applications

. 119Sessions

. 120Passing Parameters

... 1214 Converting Project Types

. 121Converting from Standalone to ISAPI in Delphi

. 122Converting from StandAlone to ISAPI in CBuilder

. 123Converting from ISAPI to StandAlone in Delphi

... 1245 Additional Linux Information

. 124Overview

IVContents

IV

Copyright Atozed Software

... 1246 Application ports

Part XVIII Performance Evaluations 126

... 1261 Tips

Part XIX Scaling IntraWeb Applications 128

... 1281 Scaling Methods

... 1282 Distributing the IntraWeb Application

Part XX Secure HTTP / SSL 131

... 1311 Introduction

... 1312 Enabling SSL

... 1313 Converting Certificates to PEM Format

... 1324 Example

Index 133

IntraWeb ManualV

Copyright Atozed Software

"In a nutshell, IntraWeb does things the Delphi way. So am I
impressed? Yes, very much so. As I've examined WebSnap

and compared it with IntraWeb, it's clear to me that IntraWeb is the
sort of technology that I would have expected to see from Borland

but didn't."

Delphi Magazine, March 2002

1

Copyright Atozed Software

Section

I

Welcome 3

Copyright Atozed Software

1 Welcome

IntaWeb is a revolutionary new way to create web-based applications. Built upon Web Solution Builder
and earlier versions of IntaWeb, it extends the technology of both of these, providing an excellent tool
for creating Internet, Intranet and Extranet applications in a quick and easy to maintain manner.

Many web-based development tools require the user to have knowledge of CGI scripting, state
tracking and complex client configurations. IntaWeb does away with all these hassles and overheads.
By simply creating the application using the component suite within Delphi or Visual Studio, and later
registering it on the server, clients can access the application using any browser that complies with
HTML version 4. These include the latest versions of Netscape and Internet Explorer. Both of these
have been fully tested with IntaWeb and are 100% compatible. No HTML, CGI or JavaScript coding is
required; all the coding is done using Delphi or C# and VB.NET for Visual Studio. For further flexibility,
the application can also be run as a stand-alone executable like any other Desktop application,
providing debugging capabilities.

1.1 Other Documentation

Be sure to check the IntaWeb FAQ (available on the Atozed Software website) as well as the
information available on the website itself. A lot of documentation is contained there that is not in the
manual or the help file and to keep it accurate and current we have not duplicated it.

This document is designed to be a manual, not a reference guide. The IntaWeb Component
Reference help file should be consulted when a reference for properties, events, methods and
components is needed.

1.2 How IntraWeb Works

IntaWeb works much like a normal executable application, with the exception that the user interface is
a web browser instead of a window. After placing the application on a web server, a user can run an
instance of the application by using a URL to start a session. The user's information will be tracked by
the instance of the application in use, thus preventing loss of the information or mixing it up with other
user information. For each user, new session information is created and tracked automatically and
transparently to the developer. The overhead is low and the capacity of an IntaWeb application is
similar to that of other web solutions such as ISAPI, CGI, or ASP.

IntaWeb is designed to build any sort of web-based application, whether it is a simple data entry form,
a poll, or a complex application where clients have to be "logged in" for an extended period of time.

1.3 Limitations of the Evaluation Version

Limitations of the evaluation edition have been designed in such a way so that you can fully evaluate
your application with no time limits and no development restrictions. The only restrictions in the
evaluation edition exist to hinder deployment.

Unique Port Numbers
When using the evaluation version of IntaWeb, the port numbers that your IntaWeb application listens
will be unique upon each execution. Any port settings you may specify will be ignored. Testing is
facilitated in evaluation mode by use of the execute menu item as it automatically adjusts its URL for
the changing port.

IP Restriction
In the evaluation version, IntaWeb applications only listen on the IP 127.0.0.1. No requests from other
IP addresses will be answered.

http://www.atozed.com/

IntraWeb Manual4

Copyright Atozed Software

No Services
IntaWeb applications cannot be installed or run as services in the evaluation version. Attempts to do
so will result in errors.

No SSL
SSL is disabled in the evaluation version.

No Deployment License
You may not deploy any applications created with the evaluation version.

1.4 Technical Support

Up-to date support information is available at http://www.atozed.com/.

1.5 License

Single User License agreement
This is a legal agreement between you the end user, and Atozed Software (hereafter referred to
simply as Atozed). By using this software package you are agreeing to be bound by the terms of this
agreement. If you do not agree with the terms of this agreement, promptly uninstall this software.

Grant of License - Atozed grants to you the right to use one copy of the enclosed software for a
single developers use. This includes the ability to install on multiple computers so long as the
installation is only used by the same single developer. In plain English this means you can
install this software on your desktop and your laptop so long as you are the only one who
uses the software. You may not install on multiple computers for multiple developers to use.
Furthermore you may not install on one computer for multiple developers to use aside from
normal debugging purposes and peer review.
You may make one copy of the software for backup purposes for use on your own computer.
The original software must be backed up in unmodified form.
You may not network the software or use it on more than a single computer or computer
terminal at any time, unless a copy is purchased for each developer on the network that will
use the software. You may not rent or lease the software, but you may transfer the software
and accompanying written material and this license to another person on a permanent basis
provided you retain no copies and the other person agrees to accept the terms and conditions
of this agreement.
THIS SOFTWARE MAY NOT BE DISTRIBUTED, IN MODIFIED OR UNMODIFIED FORM,
AS PART OF ANY APPLICATION PROGRAM OR OTHER SOFTWARE THAT IS A
LIBRARY-TYPE PRODUCT, DEVELOPMENT TOOL OR OPERATING SYSTEM, OR THAT
MAY BE COMPETITIVE WITH OR USED IN LIEU OF THE PROGRAM PRODUCT,
WITHOUT THE EXPRESS WRITTEN PERMISSION OF Atozed.
This license does include the right to distribute applications using the enclosed software
provided the above requirements are met.

Term - This agreement is effective until you terminate it by destroying the software, all copies and
backups. It will also terminate if you fail to follow this agreement. You agree upon termination
to destroy the software, together with all copies thereof including backups.

Copyright - The software is owned by Atozed and is protected by International laws and treaties.
Therefore, you must treat the software like any other copyrighted material.

Warranty Clause

Limited Warranty - Atozed warrants that the software will perform substantially in accordance
with the accompanying written materials. Atozed does not warrant that the functions contained

http://www.atozed.com/

Welcome 5

Copyright Atozed Software

in the software will meet your requirements, or any operation of the software will be
uninterrupted or free of errors.

Disclaimer of Warranties - Atozed disclaims all other warranties, either expressed or implied,
including but not limited to implied warranties of merchantability of fitness from particular
purpose, with respect to the software and accompanying written materials. Atozed will have
no consequential damages. In no event, shall Atozed or its suppliers be liable for damages
whatsoever, (including without limitation, damages for loss of business profits, business
interruption, loss of business information, or any pecuniary loss), arising out of the use or the
inability to this product, even if Atozed has been advised of the possibility of such damages.

Sole Remedy - Atozed holds no liability for remedy.

U.S. Government Restricted Rights - This software and documentation are provided with
restrictive rights. Use, duplication or disclosure by the Government is subject to restrictions
set forth in Section c(1)(ii) of the Rights and Technical Data in Computer software clause at
52.227-7013.

1.6 Credits, Acknowledgements and Copyrights

Every attempt has been made to provide credit to the proper sources. However in many cases
multiple sources have been used only for consultation. In other cases original authors are not known,
or no licensing information was provided.

IntaWeb
IntaWeb is a commercial product and fully protected by International copyright laws and treaties.

Help and Manual
Help and Manual is used to produce this and other help files and documentation.
http://www.ec-software.com/

Inno Setup
The IntaWeb installation is performed using Inno Setup which is Copyright © 1998-2001 Jordan
Russell with portions by Martijn Laan.

The A-Team and TeamZed
Thanks to the A-Team and TeamZed for their continued support of IntaWeb.

Indy
IntaWeb uses Indy to provide much of its functionality. Indy requires that its copyright be included.
Please note that this copyright only applies to the Indy code itself. More information on the licensing of
Indy can be found at http://www.nevrona.com/indy/license.html.

Copyright
Portions of this software are Copyright (c) 1993 - 2001, Chad Z. Hower (Kudzu) and the Indy Pit Crew
- http://www.nevrona.com/Indy/

License
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

http://www.ec-software.com/

IntraWeb Manual6

Copyright Atozed Software

following disclaimer in the documentation, about box and/or other materials provided with the
distribution.

No personal names or organizations names associated with the Indy project may be used to endorse
or promote products derived from this software without specific prior written permission of the specific
individual or organization.
THIS SOFTWARE IS PROVIDED BY Chad Z. Hower (Kudzu) and the Indy Pit Crew "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Original TIWMenu author
Thanks to the person who originally authored this component. However they forgot to mark their name
in the .pas file. :)

Jason Southwell
For contribution of several components and starter components.
Contribution of TIWDataModulePool in IntaWeb 6

Thomas Brattli
http://www.dhtmlcentral.com
For eXperience DHTML cool Menus which are the basis for TIWMainMenu.

Motty Adler
For contribution of the idea and the source that TIWTimer is based on.

L. Relihan & P. Kerl
Authors of the PacText Java applet used in the features demo.

Paul Stockton and Anthony Lowery
For their contribution to the calendar code.

Others
Thanks to all the other parties who have assisted with both small and large contributions that we may
have overlooked.

Jorrit B. Jongma
Contribution of compression routines and classes for HTTP compression in IntaWeb 6

1.7 Requirements

1.7.1 Overview

The only requirement is that users of IntaWeb developed applications have browsers that are HTML 4
compatible *, since extensive use of HTML 4 and JavaScript are made. IntaWeb has been
extensively tested with Netscape and Internet Explorer and is supported with Mozilla, Netscape 6 and
higher and Internet Explorer 4.0 and higher.

NOTE: If you want Netscape 4 support you should use IntaWeb version 4. Which we will continue to

Welcome 7

Copyright Atozed Software

maintain and support. As of version 5.1, IntaWeb supports HTML 3.2 in PDA version. Therefore,
Netscape 4 is supported to a certain extent (i.e., no use of CSS or JavaScript).

HTML 4
IntaWeb uses HTML 4 and style sheets to achieve the coordinate placement of items and other
features. Usage of templates or page mode can eliminate the need for style sheets.

JavaScript
JavaScript is used to allow many advanced client features. JavaScript also allows IntaWeb to control
the browser and rendered pages. JavaScript is only required for Application Mode.

PDA (HTML 3.2) support
Intraweb 5.1 introduces PDA support. Based on HTML 3.2, 3.2 mode allows you to develop
applications that are compatible with most PDA devices. 3.2 mode does NOT require JavaScript or
CSS, making it entirely compatible with any device that supports HTML 3.2. Please note that to use
3.2 you are restricted to the 3.2 controls that appear on the palette. Most of these controls are the
same as the standard IW controls, however due to HTML 3.2 restrictions and the lack of JavaScript,
they offer in some cases less functionality than their standard counter-part.

1.7.2 Supported Browsers

Even with HTML and JavaScript standards in place, the browsers differ in many areas. IntaWeb
adjusts for these differences automatically. IntaWeb generates the appropriate HTML and JavaScript
code for the browser. IntaWeb even knows about certain bugs in specific versions of each browser
and works around them dynamically. In other cases, output for each browser is optimized. See the
section on Browser Implementations for more information.

Browser Implementations
Even with HTML and JavaScript standards in place, the browsers differ in many areas. Much of this is
because browsers often make extensions before such features are adopted as standards. Often
different browsers implement similar features in incompatible ways.

IntaWeb adjusts for these differences automatically. IntaWeb generates the appropriate HTML and
JavaScript code for the browser. IntaWeb even knows about certain bugs in specific versions of each
browser and works around them dynamically. In other cases, output for each browser is optimized.
IntaWeb performs all of this transparently to you and without using Java, ActiveX, or any plug-ins.

Internet Explorer
Internet Explorer versions 5, and 6 are supported.
Internet Explorer 4 is not officially supported anymore. However, any HTML 3.2 application should run
without any problems on Internet Explorer 4.

Netscape
Netscape 7 is supported.
Netscape 6 is not supported. The version 6 of Netscape has serious problems with HTML rendering
and JavaScript implementation. A better version is available for download on the Netscape site.

Although Netscape 6 is not officially supported, most of the applications created with IntaWeb will run
correctly on it. There are known problems with Netscape 6 when using partial updates, when using
regions, when caching files and when trying to use the TIWMenu control. There might be, however,
more issues. When developing for Netscape 6, please make sure to test your application with a newer
version of Netscape (7 or greater) before searching for bugs.

IntraWeb Manual8

Copyright Atozed Software

Mozilla
Mozilla is supported. Please make sure you're running the latest Mozilla update.

Opera
Opera 7 is fully supported.
Due to the amount of restrictions Opera 6 has with support for JavaScript, certain characteristics are
not supported currently in Opera. Many of these have to do with Anchors and alignment. Left and Top
positioning is supported with anchors, however, currently Right and Bottom are not. Other functionality
is supported in Opera.

Other Browsers
Any browser that supports HTML 3.2 rendering is supported. However, HTML 3.2 is limited in many
aspects, most noticeable being the lack of Javascript support.

1.7.3 Development Environments

When purchasing IntaWeb Enterprise Edition (does not apply to special offers), support is provided for
the following development environments:

· Delphi 5 (Pro and Enterprise)
· Delphi 6 (Pro and Enterprise)
· Delphi 7 (Professional, Enterprise and Architect)

· C++ Builder 5
· C++ Builder 6
· Kylix 2
· Kylix 3

· Visual Studio .NET 2003

There is also a Java edition that supports JBuilder, which is sold as a separate product

Section

II

IntraWeb Manual10

Copyright Atozed Software

2 What's New

2.1 Overview

IntaWeb 7 introduces many new features, including:

Hints Improved
In IW 7 it is no longer necessary to add an ESCAPE character when using the single quote(')
character in the hint's text.

Raw Text
The TIWURL, TIWURL32, TIWLink, TIWHyperLink32 controls now have the RawText property. This
property refers to how the caption of those controls is rendered as HMTL. For more information on the
RawText property please see the reference guide.

TIWTreeView Control Improved
The Font property of the TIWTreeView control contains now a CSSStyle member, that can be edited
in the designer.

Unknown Browser Detection
In IntaWeb 7, unknown browser detection functions at form level as well as at server level. This
means that, when an unknown or unsupported browser is detected at form level, the application will
redirect at the URL specified in the server controler's property UnknownBrowser.

Individual Session Timeout
In IntaWeb 7, when a session is started, it's timeout is defaulted to that of the global one, defined in
the Server Controller. (For more information about the session timeout in the Server Controller, refer
to the TIWServerControllerBase.SessionTimeout in the Reference Guide.) Later on, the session
timeout can be set individually.

DeviceNotSupported Property in Server Controller
When an unsupported device is accessed (such as a PDA with an WML device), the application
redirects to the location specified by this property, and if the property is left blank, an exception with
the message "Device not supported" is raised.

Small Changes:

· The ConvertSpaces property of TIWCustomText and TIWCustomText32 is defaulted to false. The
ConvertSpaces property indicates wether spaces contained in the Text of the control should be
rendered as ' ' or ignored.

Features introduced in 6:

· Partial/Progressive page update
· Scrollable regions
· Slow connection simulation
· Server side resizing

· IWP file processing
· Templates/subtemplates with TIWRegion and TFrame
· SSL on demand
· .NET Common Code Base

· HTTP compression
· Improvements to align/anchors
· Font size measured in pixels, instead of points

What's New 11

Copyright Atozed Software

· RGB entry in Color property editor

2.2 PDA Support

Intraweb 5.1 introduces support for hand-held devices (referred to from now on as PDA). By using
HTML 3.2 and no additional JavaScript or CSS, IntaWeb allows you to develop robust and efficient
applications for any HTML 3.2 compliant PDA device.

The following HTML 3.2 components are now available:

· TIWLabel32 - label control
· TIWEdit32 - edit box
· TIWButton32 - push button
· TIWList32 - HTML list

· TIWHRule32 - HTML horizontal rule
· TIWListBox32 - listbox control
· TIWComboBox32 - combobox control
· TIWRadioGroup32 - radio group control

· TIWImage32 - image control
· TIWImageFile32 - image file control
· TIWURL32 - link control
· TIWGrid32 - grid control

· TIWMemo32 - memo control (HTML textarea)
· TIWText32 - text control
· TIWRectangle32 - rectangle control
· TIWCheckBox32 - check box control

· TIWHyperLink32 - link control
· TIWDBEdit32 - data aware edit box
· TIWDBCheckBox32 - data aware checkbox
· TIWDBComboBox32 - data aware combobox

· TIWDBLabel32 - data aware label control
· TIWDBListBox32 - data aware listbox control
· TIWDBLookupComboBox32 - data aware combobox used for field lookups
· TIWDBLookupListBox32 - data aware listbox used for field lookups

· TIWDBMemo32 - data aware memo control (HTML textarea)
· TIWDBText32 - data aware text control
· TIWDBImage32 - data aware image control
· TIWDBRadioGroup32 - data aware radio group control

· TIWTemplateProcessorHTML32 - template processor for HTML templates
· TIWPageProducer32 - page producer used to work with WebSnap in page mode
· TIWLayoutMgrHTML32 - layout manager

Section

III

Migration Guide 13

Copyright Atozed Software

3 Migration Guide

IntraWeb migration guides are maintained for historical purposes. If you are upgrading from older
versions, you need to read each set of notes for each version.

Always back up your projects before attemting any conversions. Also always allow adequate time for
conversions.

3.1 6.0 to 7.0

Upgrading to IntraWeb 7.0 from 6.0 takes less than 5 minutes for most projects. Simply load the
Server Controller at design time, and click "Ignore". Now save and recompile. Unless you were using
the TimeOutURL property, no other covnersion is required.

The TimeOutURL property changes to SessionTimeOutURL
The TimeOutURL property of the server controller changes its name to SessionTimeOutURL and is no
longer of type string, but TIWFileReference.

Visual User Session
IntaWeb 7 introduces visual user session object. The user session object is created by the IntaWeb
Project Wizard and it is in fact a Data Module. Some of the advantages of this approach are:

· components needed by the user session can be added directly by dropping them on the form.
· it can be used as a data module, and all the session management is done by the application
· new methods and members can be added to the user session, as before.

Previous user session objects are still compatible with IntaWeb 7, so there is no need of updating the
user session to the new type unless taking advantage of the new features is wanted.

Note: Although the new user session can function as a data module, when using data module pooling,
a data module is still created.

3.2 5.1 to 6.0

Changes required when upgrading from 5.1 to 6.0:

The BGColor property
For easier and intuitive usage, the BackgroundColor properties of the form (TIWForm) and of the grid
cells of dynamic grid (TIWDynGrid) have been renamed to BGColor. The BGColor name has been
chosen as it's used for background colors throughout the components of IntaWeb.

When loading forms the contents of the old BackgroundColor property will be lost, and you'll have to
set the desired color again in the BGColor property. Same thing applies when loading forms that
contain TIWDynGrid controls.

ISAPI Projects
This change was introduced in the late stages of 5.1. For new applications, the wizard will
automatically create the correct DPR automatically. However, for existing projects, you need to add
the following code to your DPR file (highlighted with bold):

 ISAPIApp,
 IWInitISAPI,
 ServerController in 'ServerController.pas' {IWServerController: TIWServerController},
 Unit1 in 'Unit1.pas' {IWForm1: TIWFormModuleBase};

{$R *.RES}

IntraWeb Manual14

Copyright Atozed Software

exports
 GetExtensionVersion,
 HttpExtensionProc,
 TerminateExtension;

Frames
You need to convert existing TFrame forms to IntaWeb frames. To do so, create a new IntaWeb
Frame using the project wizard and then cut and paste your components on the new frame. More
information on how to create a IntaWeb Frame can be found in the IntaWeb Frame chapter of this
manual.

3.3 5.0 to 5.1

Changes required when upgrading from 5.0 to 5.1:

Whenever possible interfaces have remained the same. However is some situations it was deemed
better to change interfaces for future expansion.

For the most part migrating from a 5.0 application to 5.1 is straightforward and this section is designed
to assist you with this migration.

URLBase
To use URLBase, you need to access it via WebApplication.AppURLBase

TIWImage
The UseBorder property has been deprecated. The new BorderOptions property should be used
instead.

RWebApplication
RWebApplication is now simply WebApplication. Scope determines whether this threadvar version or
the property version is accessed.

Project Files
The project files have a new format and standalone debug executables are now separate projects
from the standalone service executables. Examples of each can be seen by looking at the Guess
demo.

A new Standalone project file should look like this:

program Guess;

uses
 Forms,
 IWMain,
 Main in 'Main.pas' {formMain: TIWFormModuleBase},
 ServerController in 'ServerController.pas' {IWServerController: TDataModule};

{$R *.res}

begin
 Application.Initialize;
 Application.CreateForm(TFormIWMain, formIWMain);
 Application.Run;
end.

When converting Service applications, you need to add IWInitService to the uses clause of the DPR
and replace the existing code with:

program GuessService;

Migration Guide 15

Copyright Atozed Software

uses
 IWInitService,
 Main in 'Main.pas' {formMain: TIWFormModuleBase},
 ServerController in 'ServerController.pas' {IWServerController: TDataModule};

{$R *.res}

begin
 IWRun;
end.

ISAPI and DSO projects have the following layout (DPR file):

ISAPI
library GuessDLL;

uses
 IWInitISAPI,
 Main in 'Main.pas' {formMain: TIWFormModuleBase},
 ServerController in 'ServerController.pas' {IWServerController: TDataModule};

{$R *.RES}

begin
 IWRun;
end.

DSO
library GuessDSO;

uses
 ApacheApp,
 IWInitApache,
 ServerController in 'ServerController.pas' {IWServerController:
 TIWServerControllerBase},
 Main in 'Main.pas' {formMain: TIWFormModuleBase};

{$R *.res}

exports
 apache_module name 'GuessDSO_module';

begin
 IWRun;
end.

When compiling for Apache 2, you need to make sure that you include IWInitApacheTwo in the uses
clause as opposed to IWInitApache. If you create an Apache 2 application using the wizard, this is
automatic.

NOTE: You need to make the appropriate changes to the Delphi 7 VCL before your modules will work
with Apache 2. This information can be obtained on Dr. Bob's website at
http://www.drbob42.com/Delphi7/Apache2040.htm

Setting the main form and server controller
For all types of projects (Standalone, ISAPI, DSO, Service), two initialization sections have to be
added. The first one should be in the Main form of the project and indicates which form is the main
form. For example, for the Guess project this would be:

initialization
 TformMain.SetAsMainForm;

SetAsMainForm is a class procedure of a TIWForm. When working on projects that support both
HTML 4.0 and PDA (HTML 3.2), it is VERY IMPORTANT that both the main form for the 4.0 version
and the 3.2 version each have an initialization section indicating that it is the main form (see

http://www.drbob42.com/Delphi7/Apache2040.htm

IntraWeb Manual16

Copyright Atozed Software

GuessMulti for examples).

The other initialization section is in regard to the server controller. This has to be set in the
ServerController itself and it is present for new projects:

initialization
 TIWServerController.SetServerControllerClass;

Here SetServerControllerClass is again a class procedure of IWServerControllerBase.

OnNewSession
The OnNewSession event handler has a change in the signature. The new signature is:

 OnNewSession(ASession: TIWApplication; var VMainForm: TIWBaseForm);

Be sure to include IWBaseForm and IWBaseControl in the uses clause of the ServerController if
converting from a previous version.

Session and DataModule Owners
In previous versions (prior to 5.1), the session owner would be ASession and then DataModule owner
(if present) would be AOwner. In 5.1, these have changed to nil for the first and Self for the latter.

Deprecated properties on forms
It is recommendable that when you open a previously made project in versions prior to 5.1, you go

through all the
forms and ignore any non-existent properties, before compiling your application.

TemplateProcessor property
This property has been renamed to LayoutMgr. Assign any TemplateProcessor components on your

form to this
new property

Application Path
In previous versions of IW, you needed to use gsAppPath to obtain the application path. From 5.1 you
can use WebApplication.ApplicationPath to obtain this.

TIWFile
To obtain the size of a file, you no longer can access the Size property of the file stream. Instead you
will have to get it using the following method:

THTTPFiles(WebApplication.FileList).GetSize(IWFile1.Name)

Where IWFile1 is the TIWFile control used to transfer the file.

Section

IV

IntraWeb Manual18

Copyright Atozed Software

4 Installation

4.1 Installation of License Keys

The download for registered users with license keys is the same as the evaluation edition. If you have
the evaluation edition already installed you merely need to enter your license key using the
registration utility. The registration utility can be run from its icon in the IntaWeb program group.

4.2 Visual Studio.Net

Installation program automatically integrates IntaWeb into Visual studio environment. The following
tabs are added to the toolbox: "Intraweb Controls", "Intraweb DB Controls", "Intraweb Components",
"My IW User Controls". "Intraweb Controls" tab contains the standard IntaWeb controls, the "Intraweb
DB Controls" tab contains the data-aware Intraweb controls, the "Intraweb Components" tab contains
the layout managers components and the "My IW User Controls" contains the user defined controls.
The Intraweb applications must be created using the Intraweb application wizard accessible from the
New Projects window in Visual Studio .NET.

For both environments the installer also creates program groups, which can be accessed via the Start
menu. The documentation is placed in this program group.

4.3 Delphi / C++ Builder

The installation will automatically integrate IntaWeb into Delphi. Six new tabs will be created on the
component palette containing the IntaWeb components. One of them contains the non-database
components (IW Standard), another contains the data-aware ones (IW Data), the third contains
control components (IW Control), the fourth tab is for client side controls (IW Client Side), the fifth tab
is for HTML 3.2 non-database components (IW Standard 3.2) and the sixth is for HTML 3.2 data-
aware components (IW Data 3.2). A new tab will also be created in the Delphi repository. All IntaWeb
applications should be created using the templates contained in the repository under the tab IntaWeb.

The installation process copies the appropriate files to the Windows\System directory and to sub
folders of all the Delphi environments selected.

4.4 Kylix

Please see the Linux installation instructions which are linked from the IntaWeb download page.

4.5 Upgrading to a new version

Before upgrading to a new version:

For Delphi:

1. Uninstall previous versions of IntaWeb
2. Make sure you do not have left-over files on your system. Check for:

· Intra*.bpl
· Intra*.dcp

· IW*.*
3. Remove any of the files found in step 2. Make sure you check your entire system.
4. Install the new version of IntaWeb

Installation 19

Copyright Atozed Software

For Visual Studio .NET:

1. Uninstall previous version of Intraweb for .NET.

4.5.1 Delphi 7 Users

If you are using the version of IntaWeb that is included in Delphi 7, and you are entitled to an upgrade
(from the version included to version 5.1), you need to perform the following steps to install IntaWeb:

1. Uninstall the version included in Delphi 7
2. Generate a new key request by using the Key Request Application that can be found on the

Atozed website (www.atozedsoftware.com).
3. Install the new version and enter the key obtained from step 2.

http://www.atozedsoftware.com

Section

V

Demos 21

Copyright Atozed Software

5 Demos

5.1 Quick Start

Until you are ready to deploy, you should use the stand alone versions for development and testing.
For evaluation purposes you should start with the simplest demo, "Guess". Guess is a very simplistic
demo (Our version of "Hello World"), but will introduce you to IntaWeb with a simple application. After
that you can then look at the other demos to see more advanced features of IntaWeb.

Many of the demos of Intraweb for Delphi have multiple project files such as Features / FeaturesDLL /
FeaturesDSO. Features is the standalone version, FeaturesDLL is the ISAPI version, and
FeaturesDSO is the Apache version. They are different project files but share the same units and
aside from the project file the source code is identical. Finally you can finish up with the "Features"
demo which is not a "functional" application per se but a demo that demonstrates many of the features
of IntaWeb merely to demonstrate them.

There are also additional user contributed source and demos available from the IntaWeb download
page on the Atozed website.

5.2 Building A Demo Step By Step

This chapter will follow the development of a simple demo for Intraweb step by step. The demo is
called FormData and shows how IntaWeb forms can interact with each other during a session.

Description

FormsDemo is a simple application which has two screens: first one displays an edit and a button.
Clicking on the button will open the second screen which shows all data entered in the edit field of the
first form and the number of times the user has visited the second screen. This is an stand alone
application developed with IntaWeb.

How Does The StandAlone Application Work?

A standalone application is an executable that listens on port defined by the user and serves back
HTML pages.
IntaWeb can build this kind of applications. The IntaWeb forms added to the project and the controls
on it will be rendered as HTML content and served to the browser.

Building FormData Application in Delphi

From the Delphi menu, choose File|New|Other... .In the New Items window, choose the IntaWeb tab.
To create a new application, select the IntaWeb Application Wizard icon and then click OK:

IntraWeb Manual22

Copyright Atozed Software

You will be prompted with an window which allows selection of different types of applications. Choose
Stand Alone Application:

After completing these steps, the new application will have the default configuration: a project file
named Project1 and Unit1.pas and IWUnit.dfm, an empty form.
Change the name of the project to FormData and the name of the form to formMain. Now, on this
form, add from the IW Standard palette, a TIWEdit, a TIWLabel, a TIWButton, and a TIWLink. At
runtime, these controls will be rendered as standard HTML tags, so they can be interpreted by the
browser as any HTML file. The TIWEdit component will be rendered as an INPUT tag with type='text',

Demos 23

Copyright Atozed Software

the TIWLabel component will be rendered as a SPAN tag, the TIWButton component will be an INPUT
with type='button' and the TIWLink component will be rendered as an anchor tag.
Eventually, the form must look like this:

Next, add a new form to the project form the Delphi menu. Select File|New|Other... . In the New Items
window, select New Form icon. The New Form Wizard will pop up:

Select the Application Form radio button and then press ok. Name the newly created form formDialog
and add the following components on it: an TIWMemo, an TIWLabel and an TIWLink. Name the
TIWLabel component lblCount and the TIWLink lnkReturn.
Change the Caption properties of the TIWLabel and the TIWLink control, so that the form looks like
this:

IntraWeb Manual24

Copyright Atozed Software

At runtime, the controls will be rendered as HTML tags, as explained before. The TIWMemo
component becomes an TEXTAREA tag.

Now, add a public member to the TformMain class of type TFormDialog:

 FDialogForm: TformDialog;

And a public member to the TformDialog class:

 FCount: Integer;

Next step is to add an event handler for the TIWButton component. For adding an event handler to an
IntaWeb component, proceed as for any Delphi component: open the Object Inspector window and
choose the Events tab. The TIWButton class has two published events:

· OnClick event: fired when the user clicks the button in the browser's window

· OnHTMLTag event: fired when IntaWeb builds up the tag which the control is rendered as. This
event is used for adding optional attributes to the rendered tag.

In this demo, will write only the OnClick event handler. It will show the FDialogForm, the form which
will display the number of times it has been shown and the text entered in the TIWEdit component of
the main form.

This is the code that accomplishes this:

procedure TformMain.butnOkClick(Sender: TObject);
var
 s: string;
begin
 s := Trim(editText.Text);
 editText.Text := '';
 if s = '' then begin
 { navigate to the second form only if some text was entered }
 WebApplication.ShowMessage('Please enter some text.');
 end else begin

Demos 25

Copyright Atozed Software

with FDialogForm do begin
 { add edited text to the memo }
 IWMemo1.Lines.Add(s);
 { increase the number of times the form was shown }
 Inc(FCount);
 { show the form }
 Show;

 end;
 end;
end;

Note that before calling the butnOnClick procedure, the FDialogForm must be initialized. This is done
in the OnCreate event of the main form:

procedure TformMain.IWAppFormCreate(Sender: TObject);
begin
 FDialogForm := TformDialog.Create(WebApplication);
end;

Until now, the navigation between the TformMain and the TformDialog has been developed, and we
have to write the code which displays the number of times the user has visited the second screen and
the code which will redirect the user to the main form.

First, add the OnRender event handler for TformDialog. The OnRender event is used when users
want to interact with the rendering process. The rendering process is the one who generates HTML,
starting from the IntaWeb form and the controls on it. Use the same steps for adding this event
handler as for the TIWButton component.

procedure TformDialog.IWAppFormRender(Sender: TObject);
begin
 lablCount.Caption := 'This form has been shown ' + IntToStr(FCount) + ' times.';
end;

This code changes the Caption of lablCount.
Then add code for the OnClick event of lnkReturn.

procedure TformDialog.linkReturnClick(Sender: TObject);
begin
 Hide;
end;

Why does this code work? When wanting to show a form, you have to call it's Show method. For
hiding a form, call it's Hide method. What happens with the forms in memory? They are kept in a
stack, depending of the time they were created. When hiding the form from the top of the stack, the
one created before it is shown.

Testing The Application

You can test your application like any other Delphi application. You will see a dialog similar to this:

IntraWeb Manual26

Copyright Atozed Software

Press F9 to start testing your application.
You can turn on debug output by pressing the spectacles button on the toolbar. Then, in the left side
of the window you will see the sessions IDs, calls to JavaScript functions, etc.

Deploying The Application

The application will be a self contained executable, and the only thing on the server side that you'll
need to run your application. You do not even need a web server of any kind, because stand alone
applications embed an web server.

Building FormData Application in Visual Studio .NET

From the Visual Studio menu, choose File|New|Project... .In the New Project window, choose Visual
C# Projects, and Intraweb Standalone Application.

Demos 27

Copyright Atozed Software

Choose a name for the new project and click OK. On the main form created add from the Intraweb
Controls toolbox item an Edit, a TextLabel, a Button, and a Link. At runtime, these controls will be
rendered as standard HTML tags, so they can be interpreted by the browser as any HTML file. The
Edit component will be rendered as an INPUT tag with type='text', the TextLabel component will be
rendered as a SPAN tag, the Button component will be an INPUT with type='button' and the Link
component will be rendered as an anchor tag.
Eventually, the form must look like this:

Next, add a new form to the project from the Visual Studio .NET menu. Select File|Add New Item... . In
the Add New Item window, select Intraweb form.

IntraWeb Manual28

Copyright Atozed Software

The New Form Wizard will pop up:

Select the HTML 4.0 radio button and then press the button labeled create. Name the newly created
form FormDialog and add the following components on it: a Memo, a TextLabel and an Link. Name
the TextLabel component lblCount and the Link lnkReturn.
Change the Caption properties of the Label and the Link control, so that the form looks like this:

Demos 29

Copyright Atozed Software

At runtime, the controls will be rendered as HTML tags, as explained before. The Memo component
becomes an TEXTAREA tag.

Now, add a public member to the FormMain class of type FormDialog:

private FormDialog formDialog = new FormDialog();

And a public member to the TformDialog class:

public Int32 Count = 0;

Next step is to add an event handler for the Button component: in the properties tab for the Button
control, select Events.
There will be two items for the Events tab:

· OnClick event: fired when the user clicks the button in the browser's window
· OnHTMLTag event: fired when IntaWeb builds up the tag which the control is rendered as. This

event is used for adding optional attributes to the rendered tag.

In this demo, will write only the OnClick event handler. It will show the FDialogForm, the form which
will display the number of times it has been shown and the text entered in the Edit component of the
main form.

This is the code that accomplishes this:

private void btnOk_OnClick(object sender, System.EventArgs e)
{

string s = "";
if (editText.Text != null) {

s = editText.Text.Trim();
}
if ("" == s) {

WebApplication.ShowMessage("Please enter some text.");
}
else {

formDialog.GetMemoControl().Lines.Add(s);

IntraWeb Manual30

Copyright Atozed Software

formDialog.Count += 1;
formDialog.Show();

}
}

Until now, the navigation between the FormMain and the FormDialog has been developed, and we
have to write the code which displays the number of times the user has visited the second screen and
the code which will redirect the user to the main form.

First, add the OnRender event handler for FormDialog. The OnRender event is used when users want
to interact with the rendering process. The rendering process is the one who generates the HTML
displayed in the browser, starting from the IntaWeb form and the controls on it. Use the same steps for
adding this event handler as for the Button component.

private void FormDialog_OnRender(object Sender)
{

lblCount.Caption = String.Format("This form has been shown {0} times", Count);
}

This code changes the Caption of lablCount.
Then add code for the OnClick event of lnkReturn.

private void lnkReturn_OnClick(object sender, System.EventArgs e)
{

Hide();
}

Why does this code work? When wanting to show a form, you have to call it's Show method. For
hiding a form, call it's Hide method. What happens with the forms in memory? They are kept in a
stack, depending of the time they were created. When hiding the form from the top of the stack, the
one created before it is shown.

Testing The Application

You can test your application like any other Visual Studio .NET application. You will see a dialog
similar to this:

Demos 31

Copyright Atozed Software

Press F9 to start testing your application.
You can turn on debug output by pressing the spectacles button on the toolbar. Then, in the left side
of the window you will see the sessions IDs, calls to JavaScript functions, etc.

Deploying The Application

The application will be a self contained executable, which requires the NET framework 1.1.

5.3 Features

This demo is available only for Intraweb for Delphi.

The Features demo is not designed as a functional application. It is designed as a demo to show off
specific features of IntaWeb. Use this demo to see how to use specific features in IntaWeb but also to
see some of the things that IntaWeb can do.

5.4 Guess

Guess is a very simple application and contains only one form. It is however the ideal starter demo to
understand how IntaWeb works. The demo serves as a simple guess the number game.

IntraWeb Manual32

Copyright Atozed Software

5.5 GuessWB

This demo is available only for Intraweb for Delphi.
GuessWB is the Guess application implemented using page mode instead of application mode.

5.6 GuessMulti

GuessMulti is a demo which simultaneously supports normal browsers as well as PDA's in a single
executable.

5.7 FishFact

This demo is available only for Intraweb for Delphi.

FishFact is an IntaWeb port of the popular Delphi Demo FishFact. This demo requires DBDemos.

5.8 FishFactDM

This demo is available only for Intraweb for Delphi.

FishFactDM is the same as the FishFact demo, but demonstrates how to use Datamodules with
IntaWeb. FishFactDM also shows how to present a paged grid. This demo requires DBDemos.

5.9 Phoenitics Customer Profiler

Phonetics Customer Profiler is a sample application that a cellular company might use to create
custom proposals for potential customers and assist them in choosing which calling plan suits them
best. The demo does not use a database, but it does demonstrate how to track information, use
multiple forms, and templates.

5.10 StandAloneSSL

This demo is available only for Intraweb for Delphi.

StandAloneSSL demonstrates the use of stand alone mode with an SSL connection using sample
certificates.

5.11 WebSnapSurvey

This demo is available only for Intraweb for Delphi.

WebSnap survey shows how to use IntaWeb page mode with WebSnap. This demo only works in
Delphi 6 Enterprise and higher as WebSnap is new to Delphi 6 and only included in Delphi Enterprise.

5.12 Custom StandAlone

This demo is available only for Intraweb for Delphi.

The custom standalone demo demonstrates how to implement a standalone server with a custom
interface using the IWStandAlone component.

Demos 33

Copyright Atozed Software

5.13 Back Button

This demo is available only for Intraweb for Delphi.

The Back Button demo demonstrates how to use the OnBackButton event of the IWServerController
to enable back-button functionality in the browser.

5.14 Page Forms

This demo is available only for Intraweb for Delphi.

PageForms is a simple demo that shows you how to implement PageMode application using
WebBroker. For more information see the PageMode section in the manual

5.15 FishMarket

This demo is available only for Intraweb for Delphi.

FishMarket demonstrates how to use Re-Entry command in combination with cookie tracking to allow
you to exit and re-enter an IW application by passing parameters on the URL.

5.16 Die, Fly ! Die !

Die, Fly ! Die ! is a complex demo that demonstrates both basic and advanced techniques to use with
IntaWeb.
The demo is a virtual shop, when users can buy various fly killing products, ranging from a fly swatter
to a nuclear bomb.

This demo is a replica of the well known ASPX demo IBuySpy from Microsoft, and it shows how easily
complex tasks can be done with IntaWeb, without writing a single line of HTML or JavaScript code.

The demo makes heavy use of databases, and for this purpose the DBISAM engine from Elevate
Software has been chosen for the Delphi implementation and MSDE for the .NET version. In order to
compile and run the Delphi demo, you will need to obtain a copy of DBISAM. An evaluation version as
well as the full version can be obtained from their website at http://www.elevatesoftware.com. To get
the best results, please make sure you are downloading the latest engine version. For running the
Visual Studio .NET 2003 demo, you need to install the MSDE on your machine and restore the
database from the backup file delivered with the demo.

Why DBISAM ?

Long discussions took place before choosing this engine. The choice is base on these facts:

· it's fast
· it has a small footprint
· it compiles into the executable or dll and does not require additional components
· is fully SQL 99 compliant

· installation takes very little time

Source Code

Source code of Die, Fly ! Die ! has been written with the purpose of serving as a programming tutorial
for IntaWeb users. Browsing the code you can find out how to use frames, how to use the
OnHTMLTag, how to program a shopping cart, how to store images in a database and retrieve them

http://www.elevatesoftware.com

IntraWeb Manual34

Copyright Atozed Software

to a form and other tips and tricks users have requested over time.

5.17 WebMail32

WebMail32 is a powerful demo that show how easy you can get a complex PDA application using
IntaWeb.
This demo simulates a simplistic web mailer that renders its output to HTML 3.2.

WebMail32 demonstrates the use of several HTML 3.2 controls, as well as the use of static and
dynamic templates with IntaWeb and dynamic component creation.

Indy
WebMail32 uses the TIdPOP3 component, that is part of the Indy Component Library. Indy is an open
source component library for Internet protocols and connections and comes bundled with Delphi 6 and
Delphi 7.

You can also get the latest version of Indy for free from http://www.indyproject.org.

http://www.indyproject.org

Section

VI

IntraWeb Manual36

Copyright Atozed Software

6 Debugging

6.1 Getting Started

When using standalone mode debugging is the same as any other Delphi or Visual Studio .NET
application. Just set your break points, watches, etc. and run.

6.2 Debug Output

While running in stand alone mode you can turn on debug output to see sessions created, destroyed,
and HTTP requests. You can turn on debug output you can select "Show Debug Information" from
the file menu, or depress the tool bar button that has an icon of the spectacles.

This is a screen shot with the debug tool bar button depressed, and debug output information from
one user session:

6.3 Detecting Errors on Startup

If errors occur during start up of an application IntaWeb will terminate the application and log the error
to an .err file. The applications filename with an .err extension will be used. If you are having trouble
starting an application, check for an associated .err file. The .err file is a text file and can be viewed
with notepad, or edln.
Errors that occur outside of the program block such as missing required packages or statically linked
DLLs cannot be detected and will not be logged in the .err file.

6.4 Command Line Parameters

Auto Browser Launch
To further expedite development you can add "/LaunchBrowser" to the application parameters to have
the program launch the browser automatically each time it is run. To do this in Delphi, select the
Parameters menu item from the Run menu. Then enter "/LaunchBrowser" in the Parameters field. The
next time you execute your application the browser will automatically be launched. Same thing can be
achieved in Visual Studio .NET by entering "/LaunchBrowser" for the Command Line Arguments

Debugging 37

Copyright Atozed Software

option from the project's properties pages, Configuration Properties/Debugging section.

Auto Minimize
The debug screen can be told to start minimized by passing /minimize on the command line. This is
useful during development if combined with /LaunchBrowser

Section

VII

Development 39

Copyright Atozed Software

7 Development

7.1 Rethinking the User Interface

Many people try to design their web applications exactly like normal applications. If you try this, you
will create interfaces that do not work well. Imagine making a windows application behave like a DOS
application (WordPerfect did this with their initial Windows port). That would be an awkward interface
would it not? Not only do you need to think differently about your user interface for the web, you also
need to realize that the web has limitations and design around them.

One example of this is DBGrids. In a normal Delphi application, it might be considered normal to
display hundreds or thousands of records in a grid. Doing such on the web will create very large
HTML documents and very slow load times for the user.

Once developers realize this fact, they often ask for "Next" and "Previous" buttons and that the DBGrid
be expanded to allow partial display. While this could be implemented, it would need to be
implemented either to consume large amounts of memory on the server, or by constantly requiring the
database which would consume less memory but would be slow. Instead of approaching it like a
normal Delphi application, rethink your interface for the web.

Certainly not the only possibility, but a common one is the following technique. Instead of presenting
your users with thousands of records initially, present them with a blank grid and a search field.
Require your users to present some basic criteria to locate the records that they need. Using the
search criteria, you can then return dozens, or just a few hundred rows. Not only is this good for
bandwidth, but it is a good user interface, and will minimize the load on your database.

Allowing users to enter search criteria still allows for the possibility that the results may still number in
the thousands and cause the very same problem that you were trying to avoid. To assist with this,
TIWDBGrid has a RowLimit property. It defaults to 0, which means it is disabled. You can set it to a
maximum value, and no matter how may rows the query returns, no more than the number in
RowLimit will be returned to the user.

If you think about this, you have probably seen this technique elsewhere. Many search engines limit
the number of rows that are returned. This is not only for bandwidth reasons. In most cases, the data
becomes diminishingly useful after a certain number. In cases where this is not true, simply too much
data is given to the user at one time and they will likely filter it anyways.

If you still decide that you do want a "paged grid" consisting of small sets of data with next / previous
options you can accomplish this by setting the TIWDBGrid's StartFirst property to false and setting the
RowLimit property to the number of rows you wish to display at a given time. Then by positioning the
dataset before display, you can move next / previous.

7.2 Writing Your First IntraWeb Application

Using Delphi

All IntaWeb applications should be created using the IntaWeb Application Wizard in the IntaWeb tab in
the repository. Click on File -> New -> Other and then choose the IntaWeb tab. Select the IntaWeb
Application Wizard. Finally click Ok.

This creates a framework for a new IntaWeb stand alone application. Although the project can be
compiled and executed at this stage, it does not do anything. The standard debug form comes up
displaying some information about IW and menu items to debug the application. Selecting the Execute
(or pressing the F9 key) menu item will launch the browser with a blank page. This is because main

IntraWeb Manual40

Copyright Atozed Software

form does not contain any components or functionality yet.

program Project1;

uses
 Forms,
 IWMain,
 ServerController in 'ServerController.pas' {IWServerController: TIWServerController},
 Unit1 in 'Unit1.pas' {IWForm1: TIWFormModuleBase};

{$R *.res}

begin
 Application.Initialize;
 Application.CreateForm(TFormIWMain, formIWMain);
 Application.Run;
end.

The code in the figure above displays the contents of the project file. You can see that it is the same
as a standard Delphi application. This is true for stand alone applications.

As mentioned previously, the new project is the basic building block for any IntaWeb application. Like
any other Delphi project, a main IntaWeb form is created and can be used as the main form of the
application. To demonstrate the power and the facility of IW applications, below, a small example is
shown.

1. Open up the default IWForm (IWUnit1.pas) that has been created.
2. Drop a TIWButton, TIWEdit and TIWLabel on the form in no particular order.
3. Assign the following code to the Button's OnClick event:

procedure TIWFormModule.IWButton1Click(Sender: TObject);
begin
 IWLabel1.Caption := IWEdit1.Text;
end;

Once the steps are complete, compile and run the application. To test it, press the F9 key. The default
browser should be launched and display the main form. Enter some text in the text box and click on
the button. The output is displayed in the label.

Using Visual Studio .NET

To build an IntraWeb.NET application choose IntaWeb Standalone Application or IntaWeb ISAPI
Application form the New Project window in Visual Studio .NET. Select the default options in the
wizard and check the code generated by the wizard for the application's entry point:

[STAThread]
static void Main()
{

IWServerController.SetServerControllerClass(typeof(IWServerController));
FormMain.SetAsMainForm(typeof(FormMain));
Application.Run(new Main());

}

If you click Start at this stage, and launch a browser form the Debug Window, the page shown in the
browser will be blank, since no control was yet placed on the form and no extra code written.
Try this simple example:

1) On the formMain, drop a Button, a TextLabel and an Edit control.
2) Assign the OnClick event of the button to this function

private void button1_OnClick(object sender, System.EventArgs e)

Development 41

Copyright Atozed Software

{
 textLabel1.Caption = edit1.Text;

}

Now compile and run the application. Click Start and press F9 in the Debug Window. The default
browser will be launched. Enter some text in the edit and click the button.

Granted what we have shown in these examples is not rocket science. But, it has been created using
standard Delphi/C# code and without any HTML. The example presented has been chosen because
of its simplicity. The purpose is to demonstrate that programming IntaWeb applications is very much
the same as developing any other windows application. The same methods, properties, events, etc.
can be used in the same way. However, IntaWeb is much more powerful and can be used to create
fully enabled database applications and more.

For a more detailed introduction to creating new applications and detailed tutorials, please see
tutorials on the Atozed website at http://www.atozed.com.

7.3 Images and Graphics

IntaWeb supports graphics via the use of templates, TIWImage, TIWDBImage and TIWImageFile
Delphi components or the equivalents WebImage, ImageFile and DBImage controls in Visual Studio
.NET. There are many ways to use graphics with in IntaWeb, but these are the primary methods.

Templates
Use of graphics in templates is done by inserting the graphics directly into the HTML. Graphics may
be served using the Files directory, or a standard web server.

TIWImage and WebImage
TIWImage (WebImage in Intraweb for Visual Studio .NET) is used for dynamic images. Each time an
image is requested the image is converted to a JPG. This can be rather resource intensive and thus
should only be used for images that will be changed as part of an application's function.

For an example of this, please see the Dynamic Interactive Image demonstration in the Features
demo.

For static images that are not generated each time, use TIWImageFile.

TIWDBImage and DBImage
TIWDBImage (DBImage in Intraweb for Visual Studio .NET) converts images from a database field to
a JPG automatically. It is used just like a normal TDBImage, it performs all the work necessary to
display the image from the database field into the browser.
For an example of TIWDBImage, see either of the FishFact demos.

TIWImageFile and ImageFile
TIWImageFile (ImageFile in Intraweb for Visual Studio .NET) serves a file directly from a file on disk.
Because it does no conversion of the image, TIWImageFile is an extremely efficient way to serve
images and is much more efficient than TIWImage. If you are using images that are completely static,
you should always use TIWImageFile.

TIWImageFile provides for design time support as well by displaying the image at design time.
However the image is merely displayed, the image data is not stored with the form. Whenever
displayed at design time the image is loaded from the file on disk.
The filename specifies a full path and filename to the image file to display at design time.
At run time, the path is ignored and only the filename is used. At run time, the image is expected to be

http://www.atozed.com

IntraWeb Manual42

Copyright Atozed Software

in the files directory.

GIF Support
IntaWeb for Delphi can support GIF files however the install does not install GIF support. Please see
the IntaWeb FAQ for details on how to use GIF files with IntaWeb. IntaWeb for Visual Studio .NET has
GIF support.

7.4 Extending IntraWeb

Custom Components
All IntaWeb components are written using an open API that easily allows you to write your own
components and add them to IntaWeb just as you can with Delphi. To further facilitate the writing of
components the source code for all IntaWeb components in included, even in the evaluation edition of
IntaWeb.

For further information on creating custom components please see the section "Writing Custom
Components" in this manual.

Embedding Raw HTML
You can also embed your own HTML in your IntaWeb application without writing a component by
using the TIWText component. Simply drop a TIWText component on your form. Set the RawText
property to True, and the WantReturns to False. Finally, put the HTML in the Lines property and your
custom HTML will be output as part of your form.

HTML Templates
HTML templates (simply referred to as templates elsewhere) can be used to add advanced HTML into
your application and customize the look of your application. Please see the section on layout
managers for more details.

7.5 Working with COM

Initialization of COM

IntaWeb can automatically make the necessary calls to initialize COM. This is very much useful when
working with components such as ADO to access data. To use this feature, set the property
ComInitialization in the ServerController. It can take one of three possible values:

· ciNone: No COM intialization is called. This is the default.
· ciNormal: COM is initialized. This is the method used when deploying Standalone applications built

with IntaWeb. It specifies the concurrency model as single-thread apartment.Internally, IntaWeb will
make a call to CoInitialize(nil).

· ciMultiThreaded: Use this setting when requiring COM initialization and when deploying as an
ISAPI DLL.This will initialize COM for multi-threaded object concurrency. Internally, IntaWeb will
make a call to CoInitializeEx(nil, COINIT_MULTITHREADED).

Uninitialization is also taken care of automatically when the property is set to something other than
ciNone.

Threads and COM

Most COM objects cannot be passed between threads. IntaWeb application are multi threaded HTTP
servers that reuse threads, therefore you cannot store references to COM objects between two
accesses to the same session or between sessions. Depending on your problem specific, you can

Development 43

Copyright Atozed Software

either use a COM object in a single operation (not across the whole session, but at one access at a
time), then discard it, or marshal the COM interfaces needed by yourselves.

7.6 Working with ClientDataSet Components

This chapter refers only to IntaWeb for Delphi.

If you are using a ClientDataSet component and you get an Access Violation when exiting the
application, you need to add the DBClient unit in the application uses clause before IWMain.

The reason for the access violation is that if DBClient is not included in project file uses
clause, it's internal interfaces are freed before all sessions are closed and when IW closes it's
sessions it will try to free ClientDataSet component, and you will get the access violation.

When DBClient is placed before IWMain IW will free sessions before DBClient interfaces are
freed.

7.7 Working with PDA

IntaWeb 5.1 introduces support for PDA. This is accomplished by restricting the output generated by
IW application using pure HTML 3.2 without any additional JavaScript or Cascading Style Sheets.
Although at first this would seem that application development is limited, it is important to understand
that the limitations are mostly imposed by the devices rather than IW. Since HTML 3.2 is a standard
that nearly all devices on the market support, it is a good option for developing web applications
focused on PDA's.

Developing 3.2 applications
Developing in Delphi
When developing PDA applications, you need to use Applications forms (alternatively Page forms)
that are of the class TIWAppForm32 (TIWPageForm32). This can be accomplished either using the
Wizard to create a new application and selecting "Main Form 3.2" or adding a 3.2 form to an existing
application.
Developing in Visual Studio .NET
Use the wizard to create a new application and make sure that all the forms added to the application
to be HTML 3.2 compliant (inherited from AppForm32 class).

Using 3.2 controls
PDA applications are restricted to controls that are of the class 3.2. However, due to the restrictions
imposed by HTML 3.2, these counterpart controls sometimes do not have all the functionality that the
4.0 (or normal) IW controls have. You can ONLY use 3.2 controls for PDA applications.
Using Intraweb for Delphi 3.2 controls
There are two tabs on the component palette that have the corresponding 3.2 version component of
the standard IW components.
Using Intraweb for .NET 3.2 controls
Visual Studio .NET automatically displays only 3.2 components in the toolbox when a 3.2 form is
active.

Rendering and layout

IntraWeb Manual44

Copyright Atozed Software

By default, when placing 3.2 controls on a form, these are rendered in vertically in tab order. This is
ideal for testing your application before finalizing the UI aspects of it. The reason for the vertical
placement is due to the fact that PDA's do not support CSS and therefore positioning cannot be
accomplished directly. To allow correct positioning, you have two alternatives. The first is to use a
TIWLayoutMgrHTML32 component and design your form using the editor. The second option is to use
a TIWTemplateProcessor32 (TemplateProcessor32 in Intraweb for Visual Studio .NET) and use
templates to design the look of the application. However, it is important to remember that when using
an external editor to design 3.2 forms, you need to restrict the HTML elements to 3.2 standard. Most
HTML editors allow you to set this option before editing.
Note: In Intraweb for Visual Studio .NET, the LayoutMgrHTML32 editor can not be used for designing
the form.

Setting the main form
As with normal IW applications, PDA versions need to have a main form defined. To do this in
Intraweb for Delphi, use the SetAsMainForm method in the initialization section of the form you require
to be the main form. In Intraweb for Visual Studio .NET declare the Main method in the form wanted
as main form.

Running the application
During development, it is much easier to test PDA applications using the computer you develop on. IW
allows you to do this by launching your normal browser and testing the PDA version. To do so, you
have two alternatives:

1. Using the Standalone application, click on the PDA icon before launching the browser with the
Launch Browser button.
2. Directly type the URL in the browser appending 32 at the end, e.g. http://127.0.0.1:8888/32

This will allow you to see the results of your IW PDA application on the browser.

When using the application directly from a PDA device, IW will detect the browser that the PDA device
uses and automatically launch the PDA application.

Note: The error message "no main form is defined" occurs when you try to access an application that
doesn't have HTML 3.2 forms with a browser that it's not able to display HTML 4.0. This might occur
with Netscape 4, as Netscape 4 doesn't have full support for HTML 4.0 and JavaScript.

7.8 Miscellaneous

External Files
Files such as images and download can be accessed using relative paths located under the main
application folder. Create a folder named files and place all HTML objects referenced inside it. In the
HTML page you can reference the images using:

img src="../files/image.jpg"

Be sure to use / and not \. Internet Explorer will correct for \, but other browsers will show broken
images. In addition, this functionality is not limited to images and can be used for any file type.

Files accessed with the files URL are cached by the browser. If you wish to create dynamic files that
should not be cached use ../filesnc/<filename> instead of ../files/<filename>. Files will still be retrieved
from the same place in the files subdirectory, but the browser will be instructed not to cache them.

Other Form Properties
Be sure to look at the properties on the form as well. There are properties that allow customization of

Development 45

Copyright Atozed Software

the output that are often overlooked. These properties allow control over the HTML output, and more.

Server Controller
Each application has a ServerController unit. The ServerController contains properties to affect how
the application acts and behaves on a global scale. It also contains events that can be defined. For
more information, see the Server Controller chapter.

Datamodules
If you use datamodules, please see the FishfactDM demo. One thing to note, if you link your
datasource properties to a datamodule at design time like FishFactDM does, your datamodules MUST
be owned by the users WebApplication. This is done in FishFactDM by setting the datamodule's
owner to the session data's owner, which is the WebApplication variable. If this is not done, the forms
will not be read in properly and all the forms will be linked to the first and same datamodule.
Note: The Datamodules refers only to Intraweb for Delphi.

Section

VIII

Form Management 47

Copyright Atozed Software

8 Form Management

8.1 Working with Forms

All forms used by an IntaWeb application must be an IntaWeb-specific form. Working with IntaWeb
forms differs a little bit from working with standard Delphi forms or Windows forms in Visual Studio
.NET. For instance, any form that is displayed must be done using the Show method of the form. In
other words modal show is not permitted or supported.

In Intraweb for Delphi
The repository contains another icon, which is the IntaWeb Form. All new IntaWeb forms should be
created using File | New and choosing the IntaWeb Form. Standard Delphi forms are not compatible
with IntaWeb. A new unit and form will be created and displayed on the screen.

In Intraweb for Visual Studio .NET
All new Intraweb forms should be created by selecting IntaWeb form in the Add Item dialog in Visual
Studio IDE.

8.2 Update Mode

Starting with version 6, IntaWeb uses a revolutionary update model that will greatly improve your
application's performance. This is called partial updates.

Application forms have now a new property, called UpdateMode. Setting this property to umAll will
force IntaWeb to use the standard update mode, the traditional mode when the whole form is
refreshed. Setting this property to umPartial will cause the form to refresh ony the controls that need
refreshing, this improving significantly the speed of your application, especially over slower
connections.

Partial update is the most innovative technology in web development. However, due to the heavy use
of scripting technologies, this update mode is available only on latest browsers and only in HTML 4.0
mode.

Limitations of partial updates

When using partial updates, several things must be taken into the consideration.
Here is a list of the situations in which partial updates won't work properly:

· TerminateAndRedirect(AURL, AMsg) won't work correctly if UpdateMode is umPartial
· Dynamic component creation won't work if UpdateMode is umPartial. To use dynamic component

creation you'll have to use the umAll update mode

· Changing the size of the controls at runtime doesn't work currently when UpdateMode is
umPartial. This is a known issue and will be corrected in a future version, but for the time being
setting any size of a control (width, height etc.) at runtime does not work.

· The Treeview control won't work with umPartial update mode
· runtime assignment of event handlers won't work in umPartial

All of those situation are happening because of the complex JavaScript coding partial updates use.
Some of these issues will be addressed in future versions of the product.

IntraWeb Manual48

Copyright Atozed Software

8.3 IntraWeb Frame

For using Delphi frames in your IntaWeb project, you must use the Frame Wizard which will create an
IntaWeb frame, inherited form Delphi's TFrame.

First, from Delphi's main menu select File | New | Other... .
In the New Items window, choose the IntaWeb tab and select New Frame:

This operation will create an control inherited from TFrame, with a TIWRegion control placed on it. All
components added to this frame must be placed on this TIWRegion component.

For adding the newly created frame on one of your forms, go to the Standard tab from Delphi's
component palette, and choose Frames:

From now one, you can use this frame as any of Delphi's TFrame.

An example of frames usage with IntaWeb can be seen in the Features demo.

Form Management 49

Copyright Atozed Software

8.4 Intraweb User Control

The equivalent for Visual Studio .NET for Delphi Intraweb frames are the user controls. This type of
controls act as a container for other Intraweb controls and can be placed on various forms. User
controls can be built in Visual Studio .NET using the wizard: select File|Add New Items from the IDE's
menu and choose from the Intraweb section Intraweb user control:

The newly created control will be automatically placed on the "My IW User Controls" tab in the toolbox.
Note that when a change occurs in an user control, you have to build the project in order for the
changes to be taken into account by the forms hosting the control.

8.5 Visual Form Inheritance

Visual Form Inheritance is not supported, but code inheritance is. Visual Form Inheritance is
problematic in normal Delphi applications and requires extra streaming support. In addition, Visual
Form Inheritance does not work properly with custom forms which IntaWeb uses. Because of these
reasons, no extra streaming support has been included in IntraWeb's code.

You can however use code inheritance. Code inheritance allows inheritance of methods, members
and properties. You can also create controls dynamically.

8.6 Managing Forms

Form management in an IntaWeb application is very similar to that of a normal Windows application
but with a few restrictions:

1. Only one form may be visible at any time. This is because the form is actually shown in the

IntraWeb Manual50

Copyright Atozed Software

browser.
2. Modal forms may not be used, however since only one form at a time may be visible, essentially

all forms are modal.
3. In Intraweb for Delphi, forms must be owned by WebApplication.

8.7 Form List

IntaWeb keeps a list of forms as part of the users session. It is kept in a stack like fashion with newly
shown forms being added to the top. When forms are hidden or released this list is used to determine
the form that should be activated if not explicitly instructed to show another form via a call to the .Show
method of a form.

Normally the form list is never directly interacted with by the user but instead methods of the forms are
called. However there are cases where direct interaction with the form list may be necessary. For
these cases TIWApplication (IWApplication in Intraweb for Visual Studio .NET) contains several
methods for interacting with the form list and are documented in the help file.

8.8 Showing Forms

Intraweb Forms are shown by calling the Show method. One thing that is different however
from a normal application is that the form is not shown immediately when the .Show method
is called. With an IntaWeb application the call to the .Show method merely sets the form as
the next active form to show after the event exits and returns to IntaWeb. Only after the event
executes will the form be shown.

A given instance of a form can be shown multiple times to bring it to the top. In this case the
instance of the form will be in the form list in multiple places.

Showing Forms in IntaWeb for Delphi

The general format to display a form is this:

TFormType.Create(WebApplication).Show;

This may be confusing at first, but it is just short hand for:

with TFormType.Create(WebApplication) do begin
 Show;
end;

This should be familiar to you as it is the same as in a standard application except the owner
here is WebApplication.

Showing Forms in Intraweb for Visual studio .NET

The general form is:

(new FormType()).Show();

Form Management 51

Copyright Atozed Software

8.9 Hiding Forms

In a normal application a form can be hidden without destroying the form by calling the .Hide
method.
The same functionality can be implemented in IntaWeb by calling its simply calling the .Hide
method. The .Hide method will hide the form without destroying it as .Release does.

.Hide removes all references in the form list as .Release does but does not destroy the form.
Because of this you must keep a reference to the form if you wish to redisplay it later,
otherwise the form will become orphaned.

8.10 Destroying Forms

In a normal Delphi application when a form is no longer needed it can be destroyed using the
.Free or the .Destroy methods.

In an IntaWeb application it is similar, however you must not call the .Free or .Destroy
methods directly. Instead you must call the .Release method. The .Release method does not
actually destroy the form when called. The form will not be destroyed until the event exits
and returns control to IntaWeb. This is because .Release is usually called from within and
event of the form itself, although this is not always the case.

After release is called, just like in a normal application the active form becomes the one that
was active prior to the destroyed form became active. If you do not wish to return the user to
the prior form you must call the .Show method for a different form.
The .Show method can be called before or after .Release since neither takes effect until
control is returned back to IntaWeb.
When a form is released, all references to it in the form list are removed. This causes an
alteration in the order of the forms that will be shown when forms are hidden or released with
no explicit .Show method calls.

In Visual Studio .NET the forms are not explicitly deleted because of the garbage collector.
Calling .Release is needed though, so the form is removed from the form list.

8.11 Passing Data Between Forms

Data can be passed between form just like in any normal application. Since forms are
persistent information can be stored in member variables of form classes.
For demonstration purposes we will build a simple demo with two forms. The main form will
contain a button and an edit box. The other form contains a memo field and a label. When the
user presses the button on the main form the text from the edit box will be added to the memo
on the second form and the form will be displayed. The second form will also display how
many times it has been displayed and allow the user to return to the main form.

Complete Demo
To see the project in action, please see the FormData.dpr project in the Demos directory of
IntaWeb for Delphi, or the FormData.sln in the Demos directory of Intraweb for Visual
Studio .NET. For the Visual Studio .NET version, the demo is available in both C# and

IntraWeb Manual52

Copyright Atozed Software

VB.NET languages.

Delphi example
This is how the main form looks like at design time:

Main Form – Design Time

Main Form – Source Code

unit Main;
{PUBDIST}

interface

uses
 IWAppForm, IWApplication, IWTypes, IWCompButton, IWCompEdit,
Classes,
 Controls, IWControl, IWCompLabel, Dialog, IWHTMLControls;

type
 TformMain = class(TIWAppForm)
 IWLabel1: TIWLabel;
 editText: TIWEdit;
 butnOk: TIWButton;
 IWLink1: TIWLink;
 procedure butnOkClick(Sender: TObject);
 procedure IWAppFormCreate(Sender: TObject);
 procedure IWLink1Click(Sender: TObject);
 public
 FDialogForm: TformDialog;
 end;

implementation
{$R *.dfm}

uses
 SysUtils;

procedure TformMain.butnOkClick(Sender: TObject);
var
 s: string;
begin

Form Management 53

Copyright Atozed Software

s := Trim(editText.Text);
 editText.Text := '';
 if s = '' then begin
 WebApplication.ShowMessage('Please enter some text.');
 end else begin
 with FDialogForm do begin
 IWMemo1.Lines.Add(s);
 Inc(FCount);
 Show;
 end;
 end;
end;

procedure TformMain.IWAppFormCreate(Sender: TObject);
begin
 FDialogForm := TformDialog.Create(WebApplication);
end;

procedure TformMain.IWLink1Click(Sender: TObject);
begin
 WebApplication.Terminate('Good bye!');
end;

end.

IWLink1 OnClick
This event is hooked to the link with the caption "Quit" and simply terminates the user
session when the user clicks the link.

OnCreate
The OnCreate event is called when the form is created. In this event another form is created
and the reference to it is stored as a member variable of this form so it can be accessed again
later.

butnOk.OnClick
In the OnClick event the edit box is checked for data. If no data exists
WebApplication.ShowMessage is called to display a message to the user. After the message is
dismissed the main form is shown again.

If the user did enter data, using FDialogForm (which was created in this form's OnCreate) is
used. Data is added to the memo, and a member variable of TFormDialog is updated. It is
then displayed using the .Show method. As you can see, data is very easy to pass between
forms and is the same as in a normal Delphi application.

Visual Studio .NET example

The forms are called: FormMain and FormDialog

FormMain - Design time

IntraWeb Manual54

Copyright Atozed Software

FormMain - C# source code:

using System;
using System.Collections;
using System.ComponentModel;
using System.Drawing;
using System.Windows.Forms;
using System.Data;
using Atozed.Intraweb.NETMain;
using Atozed.Intraweb.AppFormUnit;

namespace FormData
{

public class FormMain : AppForm
{

private Atozed.Intraweb.CompLabel.TextLabel tiwLabel1;
private Atozed.Intraweb.CompEdit.Edit editText;
private Atozed.Intraweb.CompButton.Button btnOk;
private Atozed.Intraweb.HTMLControls.Link lnkQuit;
private System.ComponentModel.Container components = null;
private FormDialog formDialog = new FormDialog();

public FormMain()
{

// This call is required by the Windows Form Designer.
InitializeComponent();

// TODO: Add any initialization after the InitializeComponent call
}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{

if (disposing)
{

if (components != null)
{

components.Dispose();

Form Management 55

Copyright Atozed Software

}
}
base.Dispose(disposing);

}

#region Designer generated code
/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{

}
#endregion

#region Application entry point
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{

IWServerController.SetServerControllerClass(typeof(IWServerController));
new IWLicenseKey();
FormMain.SetAsMainForm(typeof(FormMain));
Application.Run(new Main());

}
#endregion

private void btnOk_OnClick(object sender, System.EventArgs e)
{

string s = "";
if (editText.Text != null) {

s = editText.Text.Trim();
}
if ("" == s) {

WebApplication.ShowMessage("Please enter some text.");
}
else {

formDialog.GetMemoControl().Lines.Add(s);
formDialog.Count += 1;
formDialog.Show();

}
}

private void lnkQuit_OnClick(object sender, System.EventArgs e)
{

WebApplication.Terminate("Good bye!");
}

}
}

FormMain - VB.NET source code

Imports System

IntraWeb Manual56

Copyright Atozed Software

Imports System.Collections
Imports System.ComponentModel
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Data
Imports Atozed.Intraweb.NETMain
Imports Atozed.Intraweb.AppFormUnit

Public Class FormMain
Inherits AppForm
Private WithEvents TiwLabel1 As Atozed.Intraweb.CompLabel.TextLabel
Private WithEvents editText As Atozed.Intraweb.CompEdit.Edit
Private components As System.ComponentModel.Container = Nothing
Private frmDialog As FormDialog = New FormDialog

Public Sub New()
' This call is required by the Windows Form Designer.
InitializeComponent()

' TODO: Add any initialization after the InitializeComponent call
End Sub

' <summary>
' Clean up any resources being used.
' </summary>
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing Then
If Not components Is Nothing Then

components.Dispose()
End If

End If
MyBase.Dispose(disposing)

End Sub

#Region "Designer generated code"
' <summary>
' Required method for Designer support - do not modify
' the contents of this method with the code editor.
' </summary>
Private WithEvents btnOk As Atozed.Intraweb.CompButton.Button
Private WithEvents lnkQuit As Atozed.Intraweb.HTMLControls.Link
Private Sub InitializeComponent()

 End Sub
#End Region

#Region "Application entry point"
'/// <summary>
'/// The main entry point for the application.
'/// </summary>
<STAThread()> _
Shared Sub Main()

Dim LLicense As IWLicenseKey = new IWLicenseKey()
IWServerController.SetServerControllerClass(System.Type.GetType("FormData.IWS

erverController"))
FormMain.SetAsMainForm(System.Type.GetType("FormData.FormMain"))

Form Management 57

Copyright Atozed Software

Application.Run(new Main())
End Sub
#End Region

 Private Sub lnkQuit_OnClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles lnkQuit.OnClick

WebApplication.Terminate("Good bye!")
End Sub

Private Sub btnOk_OnClick(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnOk.OnClick

Dim s As String = ""
If (editText.Text <> Nothing) Then

s = editText.Text.Trim()
End If
If ("" = s) Then

WebApplication.ShowMessage("Please enter some text.")
Else

frmDialog.GetMemoControl().Lines.Add(s)
frmDialog.Count = frmDialog.Count + 1
frmDialog.Show()

End If
End Sub

End Class

Form this example the code generated by the form designer in the InitializeComponent method was
removed.

btnOk_OnClick

In this event the edit box is checked for data. If data exists, it is added to the memo control in the
second form and the counter keeping the number of times the second form was shown is increased
and the second form is shown.

lnkQuit_OnClick

This event terminates the session.

8.12 Note for C++ Builder users

Due to the way forms work in C++ Builder, the best place to initialize all automatic class instances is
inside the form constructor rather than within the OnCreate event handler.

This will avoid the problem of instances being created twice, problem that arises because of the
creation order of the form elements in C++ Builder. In C++ Builder the OnCreate event handler is
called before the form constructor, and the OnDestroy event handler is called after the form
destructor.

To avoid such problems, please move all the automatic class instances initialization in the form
constructor, and keep in the OnCreate event handler only the dynamically allocated instances.

Section

IX

State Management 59

Copyright Atozed Software

9 State Management

9.1 Inherent State

Standard web development tools have automatic session management, but just means that it
tracks session info for you. You still have to deal with the state info between pages, or proxy
information in and out of a state object. The state objects are also usually limited to strings
and data must be marshaled in and out of strings, which is not feasible for complex data types.
IntaWeb has something better, and that is inherent state management. What the heck is that
you say? Some new buzzword? No. Ask yourself this, How do you manage state in a normal
Delphi or Windows application? What? You do not have to? EXACTLY! That is how you
manage state in IntaWeb.

9.2 Restrictions

Global Variables
Global variables in general should not be used. If you want to use a global variable that is
"global" yet specific to each user session you need use variables that are tied to the user
session as described later.
If however you want a variable that is global among all user sessions you can and should in
fact use a global variable. However as IntaWeb is a threaded environment you must take the
proper steps to protect the variable from concurrent access.

ThreadVars
ThreadVars should never be used in an IntaWeb application except as temporary storage
under controlled circumstances. IntaWeb is based on HTTP which is stateless. This
essentially means that threads are not assigned to a specific user and a user is moved between
threads between HTTP requests.

9.3 Safe Storage

Safe Storage in IntaWeb for Delphi

Form / Datamodule Members
This section refers to IntaWeb for Delphi only: since IntaWeb forms and datamodules are
persistent just like in a normal Delphi application you can store information as member
variables and properties. Such members should be used when the form itself needs to store
data about its instance or to receive input from another form.

User Session
The user session (covered more in detail in the Session Management section of this manual)
contains a .Data property that can hold a reference to an object. When you need to store user
specific information you can store it in the .Data property of the session. Data accepts a
TObject instance and will destroy the TObject automatically when the session is destroyed.
The easiest way is to create an object and add the fields that you wish, and then create your

IntraWeb Manual60

Copyright Atozed Software

object and store it in the session's Data property when the session is created. The Phonetics
demo shows an extended example of this.

When a new IntaWeb project is created a shell user session object is created for you in the
ServerController. The default ServerController looks like this:

unit ServerController;
{PUBDIST}

interface

uses
 SysUtils, Classes, IWServerControllerBase,
 IWApplication, IWAppForm;

type
 TIWServerController = class(TIWServerControllerBase)
 procedure IWServerControllerBaseNewSession(ASession:
TIWApplication;
 var VMainForm: TIWAppForm);
 private
 public
 end;

 TUserSession = class
 public
 end;

// Procs
 function UserSession: TUserSession;

implementation
{$R *.dfm}

uses
 IWInit;

function UserSession: TUserSession;
begin
 Result := TUserSession(RWebApplication.Data);
end;

procedure TIWServerController.IWServerControllerBaseNewSession(
 ASession: TIWApplication; var VMainForm: TIWAppForm);
begin
 ASession.Data := TUserSession.Create;
end;

end.

TUserSession is an empty session object that you can add members, properties and methods
to. The code to create the TUserSession for each session is also created in the OnNewSession
Event.

A function named UserSession also exists for easy access to the object. So if you changed the
TUserSession declaration to the following:

State Management 61

Copyright Atozed Software

TUserSession = class
 public
 Username: string;
 Password: string;
 end;

You could access these properties elsewhere in your code simply as shown here:

UserSession.Username := 'Joe';
LPassword := UserSession.Password;

If you do not need a user session you may choose to eliminate it from the code. It is not
necessary and is part of the default template simply as a convenience.

The class type of TUserSession can be of any type. For projects that are generated with a
datamodule the TUserSession is a descendant of TComponent and not TObject as shown here.
TComponent allows the session to own components such as the datamodule and allows for
easier cleanup.

Safe Storage in IntaWeb for Visual Studio .NET

User Session

When a new IntaWeb solution is created a shell user session object is created for you in
the UserSession file.

UserSession is an empty session object that you can add members, properties and methods to.
The code to create the UserSession for each session is also created in the OnNewSession
Event of the ServerController.

using System;
using Atozed.Intraweb.UserSessionBaseUnit;
using Atozed.Intraweb.Init;

namespace FormData
{

public class IWUserSession: UserSessionBase
{

private System.ComponentModel.Container components = null;

private void InitializeComponent()
{

components = new System.ComponentModel.Container();
}

public IWUserSession()
{

InitializeComponent();
}

public static IWUserSession UserSession()

IntraWeb Manual62

Copyright Atozed Software

{
return

(IWUserSession)Atozed.Intraweb.Init.Unit.WebApplication.Data;
}

}
}

The static method called UserSession exists for easy access to the object. So if you add the
following lines to the UserSession:

public string Username;
public string Password;

You could access these properties elsewhere in your code simply as shown here:

IWUserSession.UserSession().Username = 'Joe';
LPassword = IWUserSession.UserSession().Password;

If you do not need a user session you may choose to eliminate it from the code. It is not
necessary and is part of the default template simply as a convenience.

9.4 Complex State and the Back Button

Many people quickly discover that when building an IntaWeb application the back button in
the browser does not work. By default IntaWeb disables the back button and pressing it has
no effect. Please note first that this only applies to application mode. In page mode the back
button is fully functional. This limitation is because of the way that IntaWeb allows and uses
complex state.

Scenario – Normal Application
Imagine a normal application designed to run on the users local computer. It has five different
forms, and for some of the forms multiple instances of that form may be created with different
data (such as a properties dialog displaying properties about different objects). Imagine now
that at any time, without warning or notice to you the programmer, the user can go to any
form in the application. But not only can they go to just any form, they can go to any form, in
any prior state, even to versions of the forms which have since been removed from memory.
After they move to that form, they can even interact with it. How could such an application
deal with this?
Here are a few, but certainly not all of the problems:
•Forms may rely on data in databases that no longer exists because the user deleted it.
•Forms may rely on data that has since changed, and the user would be posting old and invalid

data.
•Objects that were in memory have changed, or no longer exist.

State Management 63

Copyright Atozed Software

Back Buttons in non IntaWeb Systems
System not built in IntaWeb usually support back buttons. However it is because they fall into
one of these categories:

•Stateless – They are completely stateless and reconstruct state between each page. This is
usually very inefficient on the server side for weblications and puts considerably extra load
on databases because data is read and written unnecessarily.

•State Streaming – These types stream the state into and out of each web page. This
consumes bandwidth and slows down page accesses. They also cannot use complex data,
or usage of complex data causes the same problems described prior.

Even applications that support the back button, such problems are still encountered. However
because they allow old data to be posted they must check the data to see if the requested
operations can be performed. This adds significantly to the amount of user code except in the
simplest of systems. Such systems are typically not weblications, but individual dynamic
pages.

IntaWeb is Not Alone
If you try many online banking applications or ordering systems, many of them have the same
restrictions, but do not behave as well. Most of them allow you to go back, but will tell you
that you have requested expired content. That is certainly very user unfriendly and confusing
to non technical people.

Back Button for Historical Purposes
Under limited circumstances the back button can be supported in application mode. It can be
enabled for historical purposes. This means that the back button will be enabled, and the user
can move backward. However if they try to interact with data on a page that they have
reached using the back button they will fail. If the user tries to interact with such a page, a
warning will be displayed:

You have attempted to post or refresh data from a page that
depends on information that is no longer available to the server
application.

Your attempted changes will be ignored. You will now be
resynchronized to the current place in the application.

After this warning is shown, the user will be shown the current form as it was before they
used the back button.
This functionality can be turned on by setting the .HistoryEnabled property to true in the
server controller.
This warning dialog can also be turned off. To do so set the .ShowResyncWarning property to
false in the server controller. If false, instead of seeing the warning dialog the user will simply
be resynchronized with the current form.

IntraWeb Manual64

Copyright Atozed Software

9.4.1 Using the OnBackButton Event

IntaWeb 5.1 introduces a new event called OnBackButton. However, despite its name, it does NOT
fire when the back button is pressed in the browser. This is due to the nature of the HTTP protocol
and therefore the browser cannot send an event to the server to indicate that this has happened. On
the other hand, what can be detected is when a form that has already been sent to the server is re-
sent. This is where this event comes into play.

OnBackButton is fired when a form is re-submitted to the server. The event can therefore be used to
detect what operation needs to take place if old data is re-sent. Assigning the event effects two
properties: HistoryEnabled and ShowResyncWarning. When an event has been assigned, the first
property is automatically set to True whereas the latter is set to False.

IntaWeb works in sequences. Each form that is submitted carries a sequence number with it. When
the application is first started, the sequence (or track ID) is set to 0. Every time a form is submitted,
this track ID is incremented by 1. Sequences play an important role in back button events.

The signature for the event is:

ASubmittedSequence, ACurrentSequence: Integer; AFormName: String; var
VHandled, VExecute: Boolean

· ASubmittedSequence: Represents the sequence that has been submitted. This will always be
LOWER than the ACurrentSequence that represents the current sequence.

· ACurrentSequence: Represents the current Track ID.
· AFormName: Working with sequence numbers, although powerful can become cumbersome.

Alternatively, you can use the AFormName parameter to see WHICH form has been re-submitted.
· VHandled: When controlling a re-submitted form, you need to set the VHandled property to True,

otherwise IntaWeb will understand that the event has not been handled and will display the default
action which is to show the Re-sync message.

· VExecute: When a form is re-created in the OnBackButton event, you can choose whether you
want to execute it or generate it. By default VExecute is FALSE which means that the form will be
generated.

For more information and an Delphi example of using the OnBackButton take a look at the
BackButton demo located in the application folder.

Section

X

IntraWeb Manual66

Copyright Atozed Software

10 Session Management

10.1 WebApplication Object

TIWApplication is to an IntaWeb application, what TApplication is to a standard Delphi application.
Like the latter, TIWApplication is not a visual component. It does not appear on the property panel and
therefore does not have published properties. However, it has a number of public properties and
methods that can be accessed via code in the IW application. For each user session, a
TIWApplication object is created. It represents the user's "application" or session. In Intraweb for
Visual Studio .NET the application class is IWApplication, and has exactly the same role as the
TIWApplication has in Intraweb for Delphi.

10.2 Referencing the Session

The users application can be accessed in several ways.

WebApplication Property of the Form
In any event or method of your forms you can simply use WebApplication which will reference the
form's WebApplication property. This will meet the requirements in nearly all cases. However some
notable exceptions where this property is not accessible are global procedures, TFrames,
datamodules, and non IntaWeb classes.

WebApplication Property of a Control
The base IntaWeb control also contains a WebApplication property that can be used when writing
custom controls.

WebApplication ThreadVar
In code that is not contained inside of an IntaWeb form or component, the threadvar version can be
accessed. This is especially useful in global procedures, or in TFrame code in Delphi Intraweb
applications, or user control code in Intraweb applications for Visual Studio .NET.

10.3 Lifetime

A users session is automatically managed by IntaWeb. When a new session is started IntaWeb will
create a new instance of a TIWApplication (or IWApplication in Visual Studio .NET) for the user and
track it automatically. It can then be used to acquire information about the user, control the users
session, or store additional information. No management on the developers part is required to
implement session management, or to track the user.

A session exists until it is manually terminated by calling one of TIWApplication's terminate methods,
or a timeout occurs. If a user does not access the application within a given time period, the user's
session will be destroyed. The default timeout period is 10 minutes, but can be adjusted by changing
the SessionTimeout property in the applications ServerController.

Note: To store session related variables, create members of the TUserSession class (UserSession in
Intraweb for Visual Studio .ENT).
Note for Delphi users: Do not work with variables declared in the var section, as these are global to all
threads and won't reflect session data properly.

Session Management 67

Copyright Atozed Software

10.4 Implementation

Sessions are managed automatically by IntaWeb. Sessions are stored in memory on the server and
there fore are secure from users who may attempt to modify the session data.

Each session is assigned a unique session ID that is used to identify the session. The session ID is
constructed in a secure manner so that session IDs are not predictable and thus prone to hacking. In
addition each session is tied to the users browser and if another browser is detected attempting to use
the same session an error will be returned.

For further security use the ServerController's RestrictIPs property. This will check the user's IP
address against the session and return an error if the IP address changes. This option is false by
default and should only be set to true in Intranets or Extranets with controlled clients. This is because
some proxy servers such as Microsofts ISA proxy server change IP addresses between HTTP
requests for a given user and will cause multiple IP addresses to be seen by the IntaWeb server.

By default the session ID is embedded in each HTML page and tracked with each HTTP request. This
allows a single user to have multiple sessions per application. The disadvantage is that once the user
is inside the application they cannot leave the application and return to it. Because of this when using
this method of session ID tracking any non application web pages must be opened in new windows
unless it is in response to the application terminating.

Session tracking can be set to use cookies instead of embedding in the HTML page by setting the
ServerController's SessionTrackingMethod property to tmCookie. This will instruct IntaWeb to use
cookies to track the user's session instead. The advantage is that the user can move in and out of the
application to other web pages with ease. The disadvantage is that many users disable cookies and
also that the user can only have one session per application.

10.5 Storing Additional Data

Additional data can be stored in the .Data property and is covered in the State Management section of
this manual.

10.6 Session Related Events

The server controller has events related to session management that are fired for session
creation and destruction.

OnNewSession
OnNewSession is fired each time a new user session is created. It passes in two arguments,
ASession and VMainForm.
ASession is a reference to the newly created session and can be used to query information
about the user or modified with custom information such as creating an object to be stored in
the .Data property.

VMainForm is passed as a var parameter. It is initialized to nil and if not set the default main
form as specified in the project file (dpr) will be used. VMainForm however can be modified
based on parameters passed on the start URL, or based on other criteria to specify a main
form for the user. To specify an alternate main form simply create it and return its instance in
the VMainForm argument. In Visual Studio .NET, VMainForm is initialized to null and
passed by reference and it has exactly the same functionality as in Intraweb for Delphi.

IntraWeb Manual68

Copyright Atozed Software

OnCloseSession
OnCloseSession is called when a users session is about to be terminated. This occurs either
when one of the forms of WebApplication.Terminate is called, or the session has timed out.

10.7 Memory Consumption

The base memory consumption per session is quite low and in most cases is not a major
consideration. The actual size can vary from session to session, but the base memory consumption
excluding any user data in the .Data property should typically be at maximum 1024 bytes.

Note: This is the typical setting. If you have enough RAM you can safely store as many bytes as you
need.

10.8 Component Reference

More information on the methods and properties of the TIWApplication class is available in the
IntaWeb help file. The IWApplication class is covered in the Intraweb for Visual Studio .NET help file.

10.9 How does Session Management Work?

When using Application Mode in IntaWeb, session tracking is performed automatically. This
allows the user to concentrate on the application and forget about session management. Even
though this is all automated, it is good to understand how IntaWeb accomplishes this and see
how it can extend it to store certain information.

IntaWeb allows the user to specify how session management is tracked. This provides
flexibility since certain situations restrict the user to a certain type of tracking. For example,
when the application is deployed to a large corporation, which has certain browser restrictions
such as not permitting cookies, another form of session tracking can be used. To provide this
flexibility, session tracking can be obtained using one of the following options: Hidden
Fields, URL and Cookies.

Developers that are accustomed to implementing session tracking using technologies such as
WebBroker are familiar with these since they are the 3 most common (if not the only) way of
implementing such a feature. The method used is set as a property in the ServerController
(SessionTracking).

10.9.1 URL

URL session tracking is the default method. When using this method, the information appears
in the URL at all times. When the application is first called, the URL is of the form:

http://xxx.xxx.xxx.xxx:xxxx/{start_command}

After the first call, the appropriate session information will be appended to the URL, which
will be:

http://xxx.xxx.xxx.xxx:xxxx/exec_command/Z/YYYYYYYYYYYYYYY

Session Management 69

Copyright Atozed Software

There are two important values here to understand, Z represents the track ID whereas
YYYYYYYYYYYYY represents the session ID. The track ID represents the "state" in which the
application is. When an IW application starts, the track ID is set to 0. Every time a new
request is made to the server, the track ID is incremented by 1. Each new request has a higher
value than the previous one. This allows IW to know exactly what state it is in.

The session ID is a random value that is generated from unique values so that it is different
for each user that accesses the application. This makes it virtually impossible for sessions to
be intermixed between two users.

One of the disadvantages of using URL as session tracking is that the user will always see the
URL in this format. Any change in the session ID will result in a invalid session
message.

10.9.2 Cookies

Cookies is a good alternative when users have cookies enabled in their browser and have no
problems using them. Cookies also offer the advantage of not having a long URL and also re-
entry options. By allowing re-entry, the application can link to an external website and from
that external website link back into the application. For more information regarding this, see
the OnReEntry event in the ServerController.

As for the information stored, the same entries (session Id and track ID) as with tmURL as
stored in the cookie.

10.9.3 Hidden Fields

Introduced in Intraweb 5.1, hidden fields can now be used to implement session tracking.
Each time a new request is made, two additional fields are rendered inside the FORM tag
when the page is displayed. Using this method of session tracking, the URL can also be kept
"simple" without the need of displaying the track ID and session ID on each request.

What are hidden fields ?

Hidden fields are standard HTML form fields that don't aren't visual. This is, the regular user never
sees them.

Hidden fields are rendered to HTML as a <INPUT TYPE="hidden" NAME="my name" VALUE="my
value"> tag, where "my name" is the name of the hidden field, and "my value" is the actual value the
hidden field is holding.

Hidden fields are contained within HTML forms, yet they don't have a visual appearance. They are
very useful for session tracking, as well as for passing data between forms.

Note: When this session tracking method is used, the ExecCmd string will appear on the URL bar if
server side resize is active. This behaviour is by design and can't be avoided.

Section

XI

Layout Managers and Templates 71

Copyright Atozed Software

11 Layout Managers and Templates

11.1 What is a Layout Manager?

A layout manager assembles the HTML pieces from each component into a complete HTML page for
output to the browser. IntaWeb has a base layout manager that can be descended from to create new
layout managers. Currently IntaWeb has two layout managers and in the future, there will be other
layout managers to support XML and more. In Intraweb for Delphi the base layout manager is called
TIWLayoutMgr and has two descendants: TIWLayoutMgrForm and TIWTemplateProcessorHTML.
Intraweb for Visual Studio .NET has the ContainerLayout base layout manager and the two
descendants: TemplateProcessorHMTL and LayoutMgrHTML.

11.2 Form Layout

This is the default layout manager. If no layout manager is specified, and implicit layout manager will
be created and used. It creates HTML pages that have the same layout and look as the designed
form. In Intraweb for Delphi this layout manger is of type TIWLayoutMgrForm and in Intraweb for
Visual Studio .NET is of type LayoutMgrForm.

11.3 HTML Templates

HTML Templates
Templates allow for advanced formatting and layout of individual containers (forms, IntaWeb
frames or user controls, regions). Templates also allow a web designer to design the layout of
containers without using the IDE. In short, templates allow presentation and implementation
to be separated. Templates are simply special HTML files.

The use of templates still requires the browser to support HTML and JavaScript.
Any framed controls will be rendered without frames when templates are used. If you wish to
have frames in the template, you should frame them by using IFrame or other method in your
template.

To use templates create a "Templates" sub directory in your application directory and create a
<FormName>.html file. Next, for the form that you wish to apply the template to:

1. Add a HTML template processor on your form. In Intraweb for Delphi this type of
processor is called TIWTemplateProcessorHTML component an is placed on the
IntaWeb Control tab on the palette. In Intraweb for Visual Studio .NET this processor
is TemplateProcessorHTML and is placed on the Intraweb components toolbox item.

2. Set the form's LayoutMgr to the new HTML template processor control.

Most of the template functionality should be self-explanatory by looking at the examples. To
see templates in action see the Phonetics Customer Profiler demo.

For each component, the template should contain a tag of the form
{%Component.HTMLName%}.
Note: This rule does not apply to non visual controls.

IntraWeb Manual72

Copyright Atozed Software

HTMLName in most cases is the same as the name. When the form is generated, the tags will
be replaced with the component output. The use of {%%} instead of <> allows for easier
editing in WSIWYG HTML editors and is compatible with all HTML editors. The {% %} tag
characters are also not considered special characters and therefore are not converted to special
tags. By default, a master FORM tag will surround the body to ensure proper function of all
input controls and buttons. However, in some cases this can interfere with the HTML. For
such cases, see the help topic for TIWTemplateProcessorHTML.MasterFormTag.

There is a special case when building HTML templates for forms which contain regions or
IntaWeb frames in Delphi code or user controls in Visual Studio .NET.
For controls on regions, the following situations can occur:
- controls are placed on a region which has it's own subtemplate. In this case, in you do not
have to specify tags for the controls on the region, just reference the region thru a tag. At
runtime, the controls on this region will be rendered according to the subtemplate. For a
Delphi example on subtemplates see the Features demo.
- controls are placed on a region which does not have a subtemplate associated. In this case
refer to the controls with:
{%RegionName.ControlHTMLName%}. If you want the region to be rendered as in design
time, in the HTML template write only the tag for the region: {%RegionHTMLName%}.
Note that in the subtemplates for regions, controls must be referred only with the HTML
name: {%Control.HTMLName%}. Please check the Summary Note at the end of this section
for an example on how to reference controls on regions with assigned subtemplates.

Controls placed on IntaWeb frames/user controls can be referenced by:
- {%FrameNameRegionName.ControlHTMLName%} if the parent IntaWeb frame is not
rendered thru a subtemplate. RegionName is the name of the region placed on the IntaWeb
frame.
- {%FrameName%}: in this case, the IntaWeb frame is rendered according to an assigned
subtemplate or, if no subtemplate is assigned, it will have the layout and look established at
design time. If you choose this approach, you do not have to reference through tags any of the
controls on the IntaWeb frame.

If you wish to use the Borland style tags <#TagName#> instead of the IntaWeb style tags you
can set the TagType property to ttBorland. IntaWeb type tags are easier to use with WSYWIG
HTML editors.

Templates and Mozilla: It is not recommended to use IWRegions inside <table> structures,
due to some issues with positioning in the Mozilla browser. For example this won't be
positioned correctly in Mozilla:

<html><body>
<table>
<tr>
 <td>test</td>
 <td>{%IWRegion1%}</td>
</tr>
</table>

Layout Managers and Templates 73

Copyright Atozed Software

</body></html>

More details on this bug can be found at http://bugzilla.mozilla.org/show_bug.cgi?id=63895
and http://bugzilla.mozilla.org/attachment.cgi?id=76045&action=view.

Summary Note: Controls on regions or frames who have their own templates must be specified
individually. Suppose you have a form (IWForm1), and put a region on the form (IWRegion1), an edit
box on the form (IWEdit1) and a label on the region (IWLabel1). If you assign templates both to the
form and the region, you have to include the controls on the form in the template for the form
(IWRegion1 and IWEdit1 in our example), and include the controls on the region in the template for
the region (IWLabel1 in our example). An example with regions and subtemplates can be seen in the
Features demo.

11.4 System Templates

System templates can be used to modify the look and layout of system messages and dialogs
generated by IntaWeb.

System Dialogs
There are two specific template files called IWShowMessage.html and IWException.html.
These are used to provide additional formatting to ShowMessage method and for the display
of uncaught exceptions. The following tags must be present:

{%textMessage%}
{%butnOk%}

Note that the template for ShowMessage has no effect when smAlert or smNewWindow is
passed to ShowMessage.

System Messages
System Templates support two tags: {%Content%} and {%AppName%} which can be used
to display the error message. {%AppName%} is as specified in ServerController.AppName.
The tag {%AppID%}. IT refers to the application ID.

IWError.html
System errors are errors that happen outside of your application and in the server portion of
IntaWeb. These errors are rare and usually consist of such things as the user entering invalid
requests via URLs or trying to access expired sessions. These errors can be handled by
creating a template named IWError.html.

Note: This chapter goes only for the Intraweb for Delphi users.

http://bugzilla.mozilla.org/show_bug.cgi?id=63895
http://bugzilla.mozilla.org/attachment.cgi?id=76045&action=view

Section

XII

Server Controller 75

Copyright Atozed Software

12 Server Controller

12.1 What is the Server Controller?

Every time you create a new IntaWeb Application*, the project wizard creates a form called
IWServerController. All IntaWeb Application projects REQUIRE this form.

Although at first it might not seem too important, and when you create you first IW application, you
might not even open the form; the ServerController plays a very important role in an IW application.
From it, you can control properties such as the port, SSL settings, and much more. This chapter
explains the concepts of the ServerController.

* The form is ONLY created when working in APPLICATION mode with IntaWeb for Delphi. When
using PageMode, the ModuleController creates a server controller internally.

12.2 Properties

Most of the relevant properties of the ServerController are published and therefore accessible via the
Object Inspector in Delphi or the Properties tab in Visual Studio .NET.

For information on the properties of the ServerController, please see the IntaWeb component
reference help file.

Section

XIII

Writing Custom Components 77

Copyright Atozed Software

13 Writing Custom Components

13.1 Overview

All IntaWeb components are written using an open API that easily allows you to write your own
components and add them to IntaWeb just as you can with Delphi or Visual Studio .NET. In Intraweb
for Delphi, to further facilitate the writing of components the source code for all components in
included, even in the evaluation edition.

13.2 Under Construction

This chapter is still under construction and will be expanded in the future. Please feel free to use our
newsgroups to ask any questions related to writing custom components.

13.3 Source Code

Source code is included for most of IntaWeb for Delphi components. The source code can be found in
the source subdirectory of the IntaWeb directory. The API is very Delphi like and for most people quite
explanatory.

13.4 Core Server

In each IntaWeb application there is a core server which is responsible for serving the actual HTTP
requests. This server is of based type TIWServer and is accessible by using the global GIWServer
variable in the IWServer unit in the Delphi version or the Atozed.Intraweb.Server namespace in the
Visual Studio .NET version. The core server has methods that are of use to component writers, and is
documented in the help files as TIWServer.

13.5 Third Party Program

If you are creating components for distribution, either free of charge or for a fee, you should consider
joining the IntaWeb Third Party program. Information about this program is available on the IntaWeb
website. The IntaWeb Third Party program can help you with the development of your components, as
well as the distribution and promotion of your components.

Section

XIV

Javascript 79

Copyright Atozed Software

14 Javascript

14.1 Overview

IntaWeb heavily uses Javascript to implement its functionality. However some users who are
comfortable with Javascript or want to add custom functionality can add their own Javascript without
having to completely bypass IntaWeb. IntaWeb contains many libraries and functions that may be
helpful.

This section will not describe every library or function as many are component specific or of little use
to the developer. Instead an overview and introduction will be presented for easy integration into the
IntaWeb Javascript libraries.

14.2 Areas of Implementation

There are endless places to add Javascript to an IntaWeb application however the common ones are:

1. Using the forms methods and properties: Javascript, AddToInitProc, AddValidation, ScriptFiles
3. From a custom control.
4. In a template.
5. Using ScriptEvents

14.3 Using ScriptEvents

Many IntaWeb visual controls have events associated to them such as the button's OnClick event.
This allows you to program the events like a standard application. However, there are some specific
JavaScript events that are not available. Although events such as OnBlur, OnFocus, etc are not
available directly, you can still use them via the ScriptEvents property of the control.

Accessing ScriptEvents property in Delphi

By double-clicking on this property, the ScriptEvents editor is displayed.

IntraWeb Manual80

Copyright Atozed Software

Once loaded, there is a list of events associated to that control. These events correspond to
JavaScript events, therefore, any code entered has to be JavaScript code and not Delphi or C++
code.

Accessing ScriptEvents property in Visual Studio .NET

Javascript 81

Copyright Atozed Software

Open the ScriptEvents window from the control's properties:

 and add the code for the wanted JavaScript event:

IntraWeb Manual82

Copyright Atozed Software

To see how to associate an event with one of these, see the next two sections.

Writing JavaScript events

(Note: Since IW 3.2 controls rely EXCLUSIVELY on HTML and do no use JavaScript or CSS,
ScriptEvents is not available for these controls)

14.3.1 Writing JavaScript events

The first step is to chose the event for which you want to associate Javascript code to. In this case, we
are going to make an function that displays a simple alert when the control obtains focus.

The first step is to drop a TIWEdit on the form and double-click on the ScriptEvents property. Once the
editor is displayed, click on the OnFocus event and then enter the following text in the edit box:

Now when you execute this:

Javascript 83

Copyright Atozed Software

and enter the IWEdit1 box, the alert will show up in the browser.

The next step is to interact with the value entered in the edit box. In this case, we are going to perform
a check of the value entered to see if it is at least six characters. The first thing we need to do is define
the function that checks to see if the text length is correct:

function CheckLength(ASender)
{
 if (ASender.value.length < 6)
 {
 alert("At least 6 characters required");
 }
}

Once this function is defined, we need to be able to use it. To do so, we can add it to the JavaScript
property of the form:

IntraWeb Manual84

Copyright Atozed Software

The last step is to call the function from the OnBlur event of the IWEdit control. To do this, choose
OnBlur from the ScriptEvents of the control and enter the following code:

CheckLength(this)

Where "this" represents the actual control in JavaScript.

Everything that has been done previously, could also be done at runtime using the controls
"HookEvents" method. For more information regarding HookEvents, see the source directory.

14.3.2 More Script Events

In the previous section (Writing JavaScript events), we saw how to write events associated with a
control and how to interact with the object. In this section, we will look at a couple more examples of
writing events.

Let us see an example of how to dynamically change the color of a button when the mouse pointer
moves over it. Obviously the events associated to this are OnMouseOver, OnMouseOut. In the
OnMouseOver, we place the following code:

this.style.color='white';
this.style.backgroundColor='red';

As you can see, this time the code has been entered directly into the event as opposed to calling a
function (not necessary in this case either). You can also contemplate that more than one instruction
can be entered. In the OnMouseOut we place the following code:

this.style.color='white';
this.style.backgroundColor='green';

Now when you move the mouse over the button, the background will go red and the text white. When
the mouse pointer leaves the button, the background color will change to green.

Javascript 85

Copyright Atozed Software

Up to now, we have seen how to associate events with a particular control and how to interact with
values/properties of the control. The next step is to see how to interact with other objects on the page.

IW controls are rendered as object named with the following format:

COMPONENT_NAME{IWCL}

For example, if we have a button dropped on the form named IWButton1, the corresponding HTML
element would be:

IWBUTTON1IWCL

This way, it is easy to refer to other controls. For example, we can enter the following value in the
OnChange event of an IWEdit:

IWBUTTON1IWCL.style.color='brown';

This way, when the value in an IWEdit changes, the button color will automatically change to brown.

14.4 Javascript Functions

14.4.1 Common Functions

IntaWeb includes several script files with JavaScript functions that are used internally. Some of these
functions can also be called by the developer to perform certain actions. Following is a list of the more
common ones:

FindElem

FindElem takes as parameter an object name and returns the object if it is found. You can use this
function to find the instance of a certain element on the form.

SubmitClickConfirm

SubmitClickConfirm is used very often in IntaWeb. It takes fours parameters:

function SubmitClickConfirm(AObjectName, AParam, ADoValidation,
AConfirmation)

The first is the object name, the second is a parameter passed to the action of the form. The third is
whether validation is required or not and the fourth indicates the confirmation string. This function is
used every time a confirmation string is entered into any control that supports the property. What
happens is the following:

When entering a value in the confirmation property of a TIWButton for example, the following code is
called:

SubmitClickConfirm("IWBUTTON1", "", True, "Did you really want to click
this button?")

What then happens is that SubmitClickConfirm will call a validation box with the text passed as
parameter. If the confirmation box returns True, the form will be submitted. Otherwise it will not be
submitted.

IntraWeb Manual86

Copyright Atozed Software

When adding code prior to a SubmitClickConfirm, make sure that the code you add returns a True or
False so that the form is submitted accordingly.

Section

XV

IntraWeb Manual88

Copyright Atozed Software

15 Page Mode

Page mode is only available in Delphi 5-7, and C++ Builder. In Delphi 8 and Visual Studio.Net,
ASP.net can be used instead of page mode.

15.1 Introduction to Page Mode

IntaWeb can be used in either Application Mode or Page Mode. The latter makes use of other
technologies such as WebBroker or WebSnap, allowing the developer to combine existing knowledge
with RAD technology. Although for most purposes, application mode is the way to go, Page Mode
offers an interesting approach to Web development. To understand the difference between the two, let
us see a scenario of where each one would fit in appropriately.

If developing an application (or weblication) where state management is required and each step is
interlinked with the previous, such as a contact relational management system, application mode
would be most appropriate. This is because the whole application fits nicely into an automata
scenario. For example, in normal CRM systems, a user logs in and is presented with a menu from
where he/she can access different utilities such as contact management, customer invoices, etc.
These are all tied to the same user, where Mr. Smith has certain contacts and Miss Jones has others.
Session management plays an important role here and tracking the entire "session" is very important.

On the other hand, if there is a website where there are various independent sections, such as News,
Stock quotes and Guest Book, none of these are really linked together. One person might want to see
the news whereas another person would like to leave his/her signature. There is no "session tracking"
as such, no need to remember if the user that requested news also requested stock quotes. This is
where Page Mode fits in perfectly.

The primary difference when working with Page Mode as opposed to Application Mode, is that the
former does not offer any kind of state or session management. All this needs to be taken care of by
the developer using existing technology such as WebBroker (or WebSnap). Again, in most cases,
session management is not required in these cases. It is very important to think through what exactly
is the purpose of the web application before deciding on using Page Mode or Application Mode, i.e., is
a full-blown application being developed or a dynamic site.

When developing dynamic sites with Page Mode, the technology behind it (as mentioned previously)
has to be either WebBroker or WebSnap. IW allows adding to this backbone by providing "pages" to
design interfaces. Think of Page Mode as pages where each page can be designed using RAD
technology with drag-n-drop of visual IW controls. Therefore, the first step is to decide whether
WebBroker or WebSnap is going to be used.

15.2 Working with Page Mode

The most important thing to remember when working with PageMode, is that it is basically and add-on
to other technologies such as WebBroker or WebSnap. Therefore, it is vital that you know and
understand either of these technologies to successfully develop applications using PageMode. On the
Atozed website there is a tutorial about WebBroker for beginners.

WebBroker is a low-level interface. The problem is that it is often pitched as a high-level one.
PageMode can be considered as "plugins" that sit on top of WebBroker (or WebSnap), which means
that you are not actually building an IW application but more a WebBroker application where parts of it
are generated using IW. Consider IW in PageMode as a "third-party" add-on to WebBroker.

The first step is to create a new WebBroker application. In this case, an ISAPI DLL will be created. For

Page Mode 89

Copyright Atozed Software

more information on WebBroker, see the Delphi online help or tutorials on the Atozed website.

Once the WebBroker application has been created, a new IW form will be added to the project. To do
this, use the IntaWeb wizard page in the Object Repository. Depending on whether the application is
going to be designed for PDA devices, PageForm 3.2 should be chosen as opposed to PageForm.

After click on the Ok button a new IW form will be displayed. This form is very similar to the IW forms
used in Application Mode, however it has some specific properties that are related to Page Mode. In
particular there are three properties that are important:

- AutoProcess
- FormAction
- PostToSelf

What AutoProcess indicates is whether the parameters will be automatically read and matched to
components on the form. This in most cases has to be set to True. Since this form represents a actual
"HTML form", an important property of any HTML form is the Form Action. This property can be set
using the FormAction. However, in most cases, the FormAction would be to call the underlying
IWPageForm itself, therefore by setting the PostToSelf property to True, this will be taken care of and
FormAction can be left blank. If on the other hand, the post has to be handled by a WebAction defined
in the WebModule, PostToSelf would need to be set to False and FormAction would need to contain
the appropriate action.

In the case of this example (see PageForms in the Demo directory), PostToSelf is set to True and
FormAction is left blank. The next step is to drop some controls on the form.

IntraWeb Manual90

Copyright Atozed Software

In this case, a IWLabel and IWURL are placed on the form. The next step is to create a second IW
form. Again, using File -> New -> IntaWeb -> New Form a new Page Form is created. Before placing
any code in either form, some previous steps are required.

Note: Some units might not be included automatically in the new page form. If the compiler complaints
about undeclared symbols, check if they aren't in this units first: IWApplication,
IWTemplateProcessorHTML, IWLayoutMgr and/or IWHTMLControls.

When using PageMode, the underlying technology takes care of displaying the forms. In Application
Mode a form would be displayed using something like:

TIWForm.Create(WebApplication).Show;

In the case of PageMode this is a slightly different.

To display the first form, define a WebAction in the WebModule as /main:

Page Mode 91

Copyright Atozed Software

Set the Default value to True and define the PathInfo and Name (as displayed in the figure above). As
with any normal WebBroker application, there are two ways to send a response back. One is using the
property Producer and the other is by setting it in code. In this case, the same thing can be done to
display the IW form. However, there are two previous steps required. The first is one-off per
application and that is to use a IWModuleController. This is a component that automatically creates an
IWServerController. All that needs to be done is to drop ONE of these components on the
WebModule:

There are no additional properties or events that need to be assigned. Just placing one on the
WebModule is sufficient.

The next step required to display an IW form is to use a IWPageProducer component. ONE is
required PER form (or assign it dynamically at runtime). This component has only one event which is
the OnGetForm. This event returns the contents of the IW form to the broker:

IntraWeb Manual92

Copyright Atozed Software

procedure TWebModule1.prodMainGetForm(ASender: TIWPageProducer;
 AWebApplication: TIWApplication; var VForm: TIWPageForm);
begin
 VForm := TformMain.Create(AWebApplication);
end;

This is similar to what is used in Application Mode, except that here, instead of doing a Show, the
result of creating the form is assigned to the VForm parameter. The next step is to assign the
producer to the WebAction using the Object Inspector. Since there is a second form in this application,
the same steps are performed for the second form. As can be seen from the event, the owner of the
form is also passed in as a parameter (AWebApplication). A second WebAction needs to be defined to
display the second form. This is again done in a similar manner to the first WebAction.

Note: When adding a IWPageProducer and assigning the event in the WebModule, two units have to
be added to the uses clause, IWApplication and IWPageForm (IWPageForm32).

What is left is to display the second form from the first one using an IWURL. To do this, all that is
needed is to call the WebAction that produces the second form. The URL can be assigned to the
IWURL in the form's OnCreate event:

procedure TformMain.IWPageFormCreate(Sender: TObject);
begin
 IWURL1.URL := WebApplication.URLBase + '/second';
end;

The second form prompts for a name and displays a label. This is programmed exactly the same as in
application mode.

Therefore you can see that working with PageMode gives you the RAD flexibility of IW and allows you
to work with existing technologies. Much of the way things are done coincides with Application Mode,
apart from some minor differences that have been mentioned in this example.

15.3 IntraWeb and Websnap

This sections provides a brief introduction to how IntaWeb can be integrated with WebSnap. A demo
will be built that uses WebSnap to provide the framework, login, and session management. IntaWeb
will be used to provide the user interface. In this manner of integration the products are quite
complimentary.

The demo is a simple demo that takes a survey of two questions that are of vital importance to the
programming community. The two questions are:

1. Which was the BEST Star Trek movie?
2. Which was the WORST Star Trek movie?

It will then collect your vote and tabulate it with other voters. To see this, simply run the demo in the
browser multiple times. After it tabulates the votes it will generate a small chart displaying the results.
Full source code for the demo is included in the demos directory. We have designed it to be simple as
possible so as to make it easy to follow. It demonstrates the following:

1. IntaWeb integration with WebSnap.
2. Use of IntaWeb Page Mode.
3. Use of WebSnap session management with IntaWeb.

Page Mode 93

Copyright Atozed Software

4. Use of WebSnap for control of authentication.
5. Use of IntaWeb to provide the primary web interface.

15.3.1 Creating the Demo

It is assumed that you are familiar with WebSnap and thus we will just show the IntaWeb specific parts
in creating this demo. We started with a standard WebSnap application that contained login support
using a TWebUserList and a TLoginFormAdapter.

The first thing that must be done to use IntaWeb with WebSnap is to add a TIWModuleController. To
simplify distribution and not require distribution of external files, IntaWeb serves "internal" files from its
libraries. IntaWeb has several internal files and as a user you can add more using IntraWeb's API.

TIWModuleController hooks into WebSnap's dispatch mechanism and provides this functionality and
other core IntaWeb requirements. This component can also be used to use IntaWeb with WebBroker
and is demonstrated in the GuessWB demo that is provided with IntaWeb.

For the TIWModuleController to be effective, the application module also needs a TWebDispatcher. If
you application doesn't already have a TWebDispatcher, simply open the application module and add
a TWebDispatcher (from the Internet tab) and then a TIWModuleController (from the IntaWeb Control
tab). No further changes are required, IntaWeb and WebSnap will do the rest.
Your application module should now look like this:

Next we created a new WebSnap page module. To do this we selected File : New : Other : WebSnap
tab : WebSnap Page Module. The dialog is shown here:

IntraWeb Manual94

Copyright Atozed Software

After OK is clicked, Delphi will display the New WebSnap Page Module dialog as shown here:

Page Mode 95

Copyright Atozed Software

Make the settings match the settings as shown in the figure above and select OK. Delphi will now
create a new WebSnap Page Module. It should look like this:

Delete the TPageProducer and create a TIWPageProducer (from the IntaWeb Control tab). The page
module should now look like this:

Save the page module and name it Page1Module.pas. Now we need to create an IntaWeb page form.
Select File : New : Other : IntaWeb : New Form. Select the Page Form radio button then click OK.
Save the form as Page1Form.pas. Now lets go back and link Page1Module to Page1Form. To do this
create an OnGetForm event for the TIWPageProducer. The event needs to look like this:

procedure TPage1.IWPageProducer1GetForm(ASender: TIWPageProducer;
 AWebApplication: TIWApplication; var VForm: TIWPageForm);
begin
 VForm := TformPage1.Create(AWebApplication);
end;

This creates an instance of TformPage1 on demand. So that the unit will compile IWApplication and
IWPageForm must also be added to the uses clause.
Now let's go back to Page1Form and create our survey questions. We've created two TIWLabel
components, two TIWComboboxes, one TIWButton, and one TIWText. For the combo boxes we have
also set the RequireInput = False. Our Page1Form now looks like this:

IntraWeb Manual96

Copyright Atozed Software

Next we will add the code for the form's OnCreate event. Double click on the form and enter this code.
The code merely loads the text and identifying numbers into the combo boxes.

procedure TformPage1.IWPageFormCreate(Sender: TObject);
var
 i: TSTMovie;
begin
 for i := Low(i) to High(i) do begin
 cmboBest.Items.AddObject(GMovies[i], TObject(i));
 end;
 (cmboBest.Items);
end;

Now we will add an OnClick event for the button. Double click on the button and add this code:

procedure TformPage1.butnVoteClick(Sender: Tobject);
var
 LBest: TSTMovie;
 LWorst: TSTMovie;
begin
 LBest := miMotionPicture;
 LWorst := miMotionPicture;
 if cmboBest.ItemIndex = -1 then begin
 textMsg.Lines.Text :=
 'Please select a choice for best Star Trek movie.';
 end else if cmboWorst.ItemIndex = -1 then begin
 textMsg.Lines.Text :=
 'Please select a choice for worst Star Trek movie.';
 end else begin
 LBest := TSTMovie([cmboBest.ItemIndex]);
 LWorst := TSTMovie([cmboWorst.ItemIndex]);
 if LBest = LWorst then begin
 textMsg.Lines.Text := 'Sorry - but you cannot pick the same movie for

best and worst.';
 end else begin
 if WebContext.Session.Values['Confirm'] <> 'Y' then begin
 if LBest = miFinalFrontier then begin
 textMsg.Lines.Text := 'Ugh. The Final Frontier was truly horrid.

Are you sure that is'
 + ' your choice for best?';

Page Mode 97

Copyright Atozed Software

butnVote.Caption := 'Vote with my questionable choice anyways';
 WebContext.Session.Values['Confirm'] := 'Y';
 end else if LBest = miVoyageHome then begin
 textMsg.Lines.Text := 'Good choice! The Voyage home was good

wasn''t it?';
 butnVote.Caption := 'Record my vote!';
 WebContext.Session.Values['Confirm'] := 'Y';
 end;
 end;
 end;
 end;
 textMsg.Visible := textMsg.Lines.Count > 0;
 if not textMsg.Visible then begin
 RecordVote(LBest, Lworst);
 ProduceResponse := False;
 DispatchPageName('PageResults', WebContext.Response, []);
 end;
end;

Now we could spend a lot of time explaining the above code. But did you notice something? Its all
standard Delphi code! So we'll just explain a few lines of interest.
The code checks to see if the user has selected information, and also makes sure that they do not
select the same movie for both choices. It also enters in its personal opinion about certain choices and
displays messages to the user by making the TIWText component visible. If the TIWText component
is not made visible, not messages are displayed and all is well. In this case the code calls RecordVote
which is a procedure in Global.pas which is part of the demo. It then sets ProduceResponse to False.
This tells IntaWeb not to render this page because we will render it manually, or give WebSnap
instructions to do so. Finally we give WebSnap instructions to render a different page module to
display the results.

There are a few properties on the form itself that we must set as well.
1.Set PostToSelf to true. This instructs the form to generate links that will send the data back to this

same form. FormAction can be set if you wish the data to be submitted to another form.
FormAction and PostToSelf (When true) are mutually exclusive.

2.Set AutoProcess to true. This instructs the form to automatically parse the HTTP variables and set
the component states accordingly. If you wish to control this process manually, you would leave
AutoProcess to false.

Next we will create another Page Module and Page Form. The steps are pretty much like the previous
one so we will not waste space on this. Instead we will start with a bank page form,
PageResultsForm.pas. We have added one TIWImage and loaded a bitmap into it. It looks like this:

IntraWeb Manual98

Copyright Atozed Software

For this form we have created only one event. We have put some drawing code in the OnRender
event. The OnRender event occurs each time IntaWeb renders a form, prior to it actually being
rendered. Here is the code for the OnRender:

procedure TformResults.IWPageFormRender(Sender: Tobject);
var
 i: TSTMovie;
 LMaxBest: Integer;
 LMaxWorst: Integer;
 LMaxWidth: Integer;
 LVotesBest: Tlist;
 LVotesWorst: Tlist;
begin
 LMaxBest := 0;
 LMaxWorst := 0;
 LMaxWidth := 0;
 LVotesBest := TList.Create; try
 LVotesWorst := TList.Create; try
 GetVotes(LVotesBest, LvotesWorst);
 with imagResults.Picture.Bitmap.Canvas do begin
 Brush.Style := bsClear;
 Font.Color := clBlue;
 Font.Name := 'Script';

Page Mode 99

Copyright Atozed Software

Font.Size := 18;
 for i := Low(i) to High(i) do begin
 TextOut(85, 98 + 24 * Ord(i), Gmovies[i]);
 LMaxWidth := Max(LMaxWidth, TextWidth(GMovies[i]));
 LMaxBest := Max(LMaxBest, Integer(LVotesBest[Ord(i)]));
 LMaxWorst := Max(LMaxWorst, Integer(LVotesWorst[Ord(i)]));
 end;
 TextOut(330, 74, 'Best');
 TextOut(480, 74, 'Worst');
 //
 Brush.Style := bsSolid;
 for i := Low(i) to High(i) do begin
 Brush.Color := Gcolors[i];
 FillRect(Rect(310, 98 + 24 * Ord(i)
 , 310 + Trunc((Integer(LVotesBest[Ord(i)]) / LMaxBest) * 150)
 , 98 + 24 * Ord(i) + 20));
 Brush.Color := GColors[TSTMovie(Ord(High(i)) – Ord(i))];
 FillRect(Rect(480, 98 + 24 * Ord(i)
 , 480 + Trunc((Integer(LVotesWorst[Ord(i)]) / LMaxWorst) * 150)
 , 98 + 24 * Ord(i) + 20));
 end;
 end;
 finally FreeAndNil(LVotesWorst); end;
 finally FreeAndNil(LVotesBest); end;
end;

15.3.2 Running the Demo

We have now covered the important parts of the demo itself. Let's see what it looks like when we run
it. First compile and run the demo and then run the Web Application Debugger from the Tools menu.
From the Web Application Debugger click on the URL link and then select WebSnapSurvey.Survey in
the browser. This will start our demo application. It should look like this:

IntraWeb Manual100

Copyright Atozed Software

This screen is produced by WebSnaps login adapter. Enter test for the user name and test for the
password and click Login. This screen will now appear:

Page Mode 101

Copyright Atozed Software

Now select your choices and click vote. Now it will display the result screen:

IntraWeb Manual102

Copyright Atozed Software

15.4 IntraWeb Pages (IWP)

15.4.1 Introduction to IWP

IntaWeb version 6 introduces IWP's (IntaWeb Pages). You can think of IWP's as server-side pages
that are processed automatically by an ISAPI/DSO application. They are similar to the same
philosophy as asp pages.

The concept behind IWP is that you can create both static and dynamic HTML pages with any
extension you want (by default IWP is used although you do not need to specify this anywhere in your
application) and the web-server processes the pages and returns either dynamic or static content
depending on the nature of the page. Think of it as a reverse process to what PageMode is. To
expand a bit more on this, let us first see how PageMode works.

PageMode
The first thing you need to do when developing PageMode applications is to create your

Page Mode 103

Copyright Atozed Software

WebBroker/WebSnap application and add IWPageForm (alternatively for 3.2 you would use
IWPageForm32) forms to your project. You would then design the form and add the dynamic
functionality to these. Once complete, you would use a TIWPageProducer to return the content to the
client (browser). Optionally you could use a template to customize the form.

IWP works on the same principle, except in this case, your first step is to create your HTML template
and then your form. Although you could do it in reverse order, it makes more sense this way since
IWP's pull the content from the template. That is, in normal template processing, the IWForm
descendant looks for a template and replaces the controls with those on the form. In IWP's, the
TEMPLATE looks for the controls and they are replaced at runtime. The template is pulling the
information from the form.

IWP is not only limited to the previous, but it also makes the task of developing dynamic-driven
websites even more simple than it is now using PageMode. Let us see a step-by-step approach on
how to make a IWP website.

15.4.2 Creating the Project

IWP pages work with any type of Delphi (CBuilder or Kylix) internet framework you want to use (like all
PageMode applications). You can use WebSnap or WebBroker for example.

The first step is to create a new Web Server application. Once you have the WebModule, you need to
drop 2 components on the form. The first one, like all PageMode applications with IW is the
IWModuleController. The second one is either a TIWPageController or a TIWPageController32
depending on whether you are creating a 4.0 or a 3.2 project. Obviously you could combine both types
of applications in one project by dropping one of each component.

The TIWPageController is a simple yet powerful component. There are no events and only 2 important
properties. As we will see later on, this component handles are the necessary tasks to find the
corresponding IWP page, parse the contents, generate the form and return the result to the browser.
There is no need for a TIWTemplateProcessor or a TIWPageProducer. These are both inherent to the
component and are transparently used. The only required properties are reflected in the figure below:

The TagType property indicates what type of tag you will be using in your IWP pages. By default this
is the ttIntraWeb tag (which is represented by enclosing control names in {%....%}). You can also set
this to Borland style tags. The other relevant property is the ApplicationURL which specifies the virtual
URL path to your application. So for example, if your script directory in your web server is /scripts and
your project is called project1.dll, then this property would take the value /scripts/project1.dll/ (note the
prefixing and suffixing of the / character).

That is all you need to do with these properties. The next step is to save the project and optionally set
the output path to that of your physical scripts directory location.

Once this is done, we can move on to configuring the server to work with IWP and then continue with
the design of our pages.

15.4.3 Preparing the server

One of the steps required when working with IWP's is to configure your web-server to identify these
files as a "special" file that requires server-side processing.

IntraWeb Manual104

Copyright Atozed Software

Below are the instructions on how to accomplish this with both Omni HTTP and IIS.

Configuring Internet Information Server
Open up the Internet Information Services Manager and choose the website you want to deploy IWP's
to. Right-click and choose Properties.

Click on the Home Directory tab and click on the Configuration button. If this is disabled, you need to
first create an application area. Once the configuration dialog is open, choose the Mappings tab and
click on the Add button. This will present the dialog to add the IWP application mapping.

In the Executable box, we need to enter the path to our project. In our case we can enter
c:\inetpub\scripts\project1.dll . The next step is to define the extension we are going to use. By default
you can use .iwp, however, this can be anything you want. Once completed, click OK on all boxes.

The next optional step is to add the index to the default document properties. This is so that if you
place the file in a folder with the name index.iwp for example, IIS will identify this as a valid request
and return the page to you IF the URL does NOT contain the name of the file (for example,
http://www.mydomain.com).

Important: You will not be able to validate the entry unless the executable exists.

Configuring Omni HTTPD
Configuring OmniHTTPD is basically the same as IIS. The first step is to add the project application
that will be handling IWP pages. Launch Omni and click on Properties. Next click on Web Server
Global Settings.

Click on the External tab and enter the extension in the Virtual edit box. In the Actual box, enter the
location of the project that is going to handle the IWP pages. Once complete, click on the Add button
and next click on OK. The next step is to add the IWP entry to the MIME settings. To do so, click on
the MIME tab and like before enter the settings as below:

Click Add and then OK. That is it. Omni is now configured to handle IWP pages. Remember that if you
choose a different extension, you must enter a different value in the corresponding extension boxes.

Page Mode 105

Copyright Atozed Software

15.4.4 Creating an IWP page

IWP pages are like normal HTML pages, in fact they are normal HTML pages. The only difference is
that optionally they include a special header section and tags for representing controls. This is optional
since as mentioned previously, IWP can be dynamic or static. In the latter case, there is no need to
add anything other than your normal HTML code.

Here is an example of the HTML source for a static IWP page:

<html>
<body>
This is my first IWP static page
</body>
</html>

As we can see, there is nothing special about the previous page. This page is returned as is by the
IWP application since it is identified as static.

However, the true power of IWP pages is when they return dynamic content that interacts with the
server-side PageMode application. When providing dynamic content, you need to add a special
header section to the IWP page. This section is enclosed in <intraweb:header> tags and currently has
two parameters: FormName and Handler. An example of this would be:

<intraweb:header>
FormName=IWForm1
Handler=OtherPage
</intraweb:header>

The FormName and Handler parameter are not both required. Before explaining what each one does,
let us see how IWP pages work. The IWPageController that was dropped on the WebModule when
creating the project is the engine behind IWP. It takes care of registering all forms in the project,
searching for the correct form when a request comes in and returning the contents, among many other
tasks. However, all this is not done by ways of magic! What this component does need to know for
each request that is sent to the server is what the corresponding form name or handler is for that
page.

If the FormName parameter is specified in the header section, the IWPageController will search the
project for the corresponding IWPageForm with the same name and use that for subsequent
processing. If the FormName is not specified, it will then look for a Handler. What is a Handler? It is a
WebAction.

Defining WebActions
Although not necessary, IWP allows you to define a webaction to handle a form (page). Like normal
PageMode applications, you can define a WebAction that uses a TIWPageProducer to return the
contents of the form and perform at the same time other additional actions. However, this is not
required and in a way adds an overhead (as far as development time is concerned) when using IWP).
You can do it if you specifically require, otherwise, by just specifying the FormName in the header
section, you can let IWP take care of all the processing for you.

Therefore, for every dynamic page content you want to add to your website, that has a corresponding
IWPageForm (32), add the <intraweb:header> section along with the FormName parameter. This tag
is transparent to HTML and when the page has been processed and returned to the browser, this
section is stripped out.

Creating a dynamic IWP page
The page below is a simple example of an IWP dynamic page, yet is ideal for demonstration

IntraWeb Manual106

Copyright Atozed Software

purposes. Basically it consists of a static web page with a dynamic label that returns the current date
and time. You can use any web page development tool to create this.

<html>
<head>
<intraweb:section>
FormName=IWForm1
</intraweb:section>
</head>
<body>
This is my first dynamic IWP page. If you look below, you will see the
current
date and time.

Current Date and Time: {%IWLabel1%}

Bye!
</body>
</html>

The next step is to create the corresponding IWPageForm for this in our project

15.4.5 Creating an IWP form

As mentioned previously, IWP websites can have both static and dynamic content. Forms are ONLY
required when the IWP page returns dynamic content.

In Creating an IWP page we saw how to create the HTML page for our dynamic IWP page. Here we
are going to see how to provide the dynamic content.

The first step is to add a new IWPageForm to our Web Server project. Again, if designing 3.2
applications, you would need to create a IWPageForm32 form.

Create a new IWPageForm by click on File -> New and choosing IntaWeb tab. Click on the Form
wizard and choose a Page Form. Once you have the form in the designer, drop a TIWLabel on it.

Make sure the form is named IWForm1 (which corresponding to the FormName parameter in the IWP
page). In the OnRender event, write the following code:

procedure TIWForm1.IWPageFormRender(Sender: TObject);
begin
 IWLabel1.Caption := FormatDateTime('ddd, dd of mmm, yyyy. hh:nn', Now);
end;

The only thing left now is to save the project and compile it. Once you have the executable ready, click
on Deploying the files

15.4.6 Deploying the files

Deploying IWP is a very simple task. Other than configuring the web server to process IWP pages, the
only other task is to copy the files to the correct location.

Page Mode 107

Copyright Atozed Software

Independently of what web server you use, there are two things that need to be deployed: the static
and dynamic pages is the first, and the actual web application is the second. The pages
(independently of whether the are static or dynamic) need to be placed in the folder where your web
server hosts web pages. In IIS this is normally wwwroot by default. In Omni it is htdocs.

The application needs to be deployed to the physical path where your virtual scripts folder points to.
This must coincide with the ApplicationURL value entered in the IWPageController.

Calling the IWP pages
Once you have deployed all the files, all you need to do is call the page in question. For example, if
your site is www.mydomain.com, and your IWP page is called first.iwp, then just open the browser and
type http://www.mydomain.com/first.iwp.

The web server (via the association we made in Preparing the Server) automatically knows that when
an IWP extension (or whatever extension you put) is requested, it will launch the corresponding web
application (in our case project1.dll).

As you can see, IWP introduces a very easy yet powerful way of creating dynamic websites. There is
hardly any code that needs to be written on the server side to handle the actual processing of the
pages, other than the forms you wish to server dynamic pages with.

Section

XVI

IntraWeb Caching Mechanism 109

Copyright Atozed Software

16 IntraWeb Caching Mechanism

16.1 Caching Files

In order to improve performance, IntaWeb keeps files that can be cached (files from the Files directory
etc) in a directory named Cache. By default this directory is created the first time the application saves
a cached file in the root folder of the application. The user can change the default name and location
of the cache directory, but in this chapter we will assume for the ease of explanation that it is named
Cache.

There are several rules that apply to the Cache directory:
· the application should not save files for later use in the Cache directory, since the directory is

emptied from time to time. The files in this directory are temporary files.

· when deploying an IntaWeb application, always make sure that it has full access (read, write,
modify etc) to the Cache directory, otherwise the application will run with unpredictable results
(access violations, internal errors etc).

Section

XVII

Deployment 111

Copyright Atozed Software

17 Deployment

17.1 Installation

17.1.1 Overview

Intraweb for Delphi

Applications created with Intraweb for Delphi are completely self contained. This means that you only
need to copy the compiled output (.exe, .so, .dll, etc) to the server. You do not need to copy external
files unless you have created external files.

Demos such as the Guess demo do not rely on any external files and thus simply copying the binary
compiled ouptut to the server is sufficient.

Intraweb for Visual Studio .NET

Applications created with Intraweb for Visual Studio .NET must be deployed on machines that have
the 1.1 .NET framework. External files that the application can contained must be copied on the
delpoyment machine as well.
deployment

17.1.2 External Files

It is possible that during the development the application created dependencies on external files. In
this case you will need to copy these files as well.

Files
If you have files in the files directory or its subdirectories, you may need to copy those to the server as
well. If so, they must resided in a files subdirectory that is placed in the same directory as the binary
executable.

Templates
If you made use of templates, you will need to copy those to the server as well. They must resided in a
templates subdirectory that is placed in the same directory as the binary executable.

17.1.3 Permissions

By default an IntaWeb application needs very few permissions to execute. These are the minimum
requirements:

1. Read access to the Files if the files subdirectory is used.
2. Read access to the Templates subdirectory if templates are used.
3. Full access to the Cache subdirectory. By default if this directory does not exist, IntaWeb will

create it and thus have the proper permissions. In this case, it must first have permissions to
create directories in the directory it is contained in. You will get unpredictable errors, most
probable access violations and internal server errors if access to this subdirectory is denied or
restricted.

In addition if you are connecting to a database you will need to make sure that the application has
proper permissions. This is especially true for local databases which access database files directly.

If using the BDE, you need to take special care so that the BDE can create its work directories as well
as access the data files.

IntraWeb Manual112

Copyright Atozed Software

17.1.4 ISAPI

17.1.4.1 Deploying in IIS

Although an IW ISAPI application is the same as a standard ISAPI application, the steps to deploy an
IW ISAPI will be explained step by step. However, due to the number of existing servers that support
ISAPI's, this section is restricted to deployment on Microsoft's Internet Information Server. This is one
of the most common servers to deploy ISAPI's on.

Before deploying the application, the first step is to configure IIS to allow ISAPI's to run. In IIS 5.0
which is the version included in Windows 2000 and Windows XP, the first step is to create the website
and under this one create a virtual folder that has execute permissions to run ISAPI applications.
IMPORTANT: Please see note at the end of the page regarding IIS version 6.

Once the website is created (or on an existing website), right click with the mouse button and choose
New -> Virtual Directory

Click Next on the Wizard Introduction screen. The next step is to select an alias for this virtual
directory. Normally, the standard is to use "scripts", however whatever alias desired can be used. This
defines how the application will be called via the URL:

http://xxx.xxxx.xxx.xxx/{alias}/xxxxxxxxxx

The next step is to choose the actual physical directory where the files are going to reside and where
the alias defined in the previous step will point to. Again, by default this would be something like

Deployment 113

Copyright Atozed Software

c:\inetpub\scripts. This of course depends on where IIS was installed and where the directory for the
current website resides.

The last step is to choose what permissions the virtual directory is going to have. Normally, it is not a
good idea to mix directories that have executables with directories that have files to be accessed for
reading/writing. Actually, it is not recommendable to have any directories with write-access via IIS. In
this case, the best option is to remove all permissions except the Execute (such as ISAPI applications
or CGI).

These are the steps required to configure IIS to run ISAPI's. However, before being able to run the
application, there are a few more issues required. If the system is using NTFS, it is necessary to make
sure that the physical directory that was entered in step 2 of the wizard and where the virtual alias
points to, has execute permissions. Permissions for IIS are based on two factors, the ones assigned in
IIS itself and those of the underlying file system, prevailing the latter over the former. Of course, if
running FAT (highly an-recommended) there are no file level permissions.

The last step remaining is to copy the ISAPI into the appropriate physical directory that was setup,
make sure that the ISAPI has execute permissions and copy any necessary files (such as Files and
Templates folders) under the physical directory.

Once all these steps have been accomplished the application can be called using the URL:

http://xxx.xxx.xxx.xxx/{alias}/{application_name.dll}/{start_command}

Optionally if a different port than the default 80 has been configured in IIS, this value will need to be
appended to the URL.

Example:
If the application runs on default port of IIS, the URL will look like this:

IntraWeb Manual114

Copyright Atozed Software

http://yourwebserver/virtualdirectory/YourDLLName/start

If you have setup your application to use a port the URL would look like:

http://yourwebserver:port/virtualdirectory/YourDLLName/start

There is an important issue to remember when deploying ISAPI's under IIS (or for that matter under
any other ISAPI compliant server), and that is that the ISAPI runs under certain security restrictions. In
particular it runs under the context of a specific user, which in the case of IIS is
IUSR_MACHINENAME, where MACHINENAME is substituted with the name of the server. This user
has very restrictive security permissions and this has to be taken into consideration when certain calls
require a higher level of security (such as communicating with COM objects, connecting to certain
databases that require file access, etc).

As with any other ISAPI application, IW ISAPI's are DLLs and as such remain in memory after the first
call. IIS allows them to be unloaded by configuring an application "area". To do this, right-click on the
newly created virtual directory (in the figure below this is named scripts) and click on properties.

Once the property screen appears, click on the Virtual Directory tab to gain access to the Application
Settings.

Deployment 115

Copyright Atozed Software

Enter a value for the Application Name (such as Scripts or IW Applications) and click on the Create
button. Set the Application Level to the required isolation. Normally Medium (Pooled) is sufficient. For
more information on isolation levels, consult the online help for IIS. When the application is accessed,
the Unload button will be enabled and by accessing the properties and clicking on the Unload button,
ALL ISAPI's located under the virtual directory will be removed from memory. Therefore, this only
needs to be done ONCE per virtual directory.

NOTE:
IIS 6 has increased security by default. To enable ISAPI's to run, you need to click on the new entry
"Web Service Extensions" in MMC and on the "All Unknown ISAPI extensions" change the status from
"Prohibited".

17.1.4.2 ISAPI Utilities

These ISAPI management utilities can assist you with management of your ISAPI DLLs.

· DataWeb - http://www.turbodb.de/en/support/isapi.html
· EggCentric - http://www.eggcentric.com/

17.1.4.3 ISAPI Hosting

A list of hosting services which support ISAPI can be found on our website at:
http://www.atozedsoftware.com/IntraWeb/FAQ/Hosts.iwp

http://www.turbodb.de/en/support/isapi.html
http://www.eggcentric.com/
http://www.atozedsoftware.com/IntraWeb/FAQ/Hosts.iwp

IntraWeb Manual116

Copyright Atozed Software

17.1.4.4 Common ISAPI Issues

ISAPI and thread pooling

The ISAPI and thread pooling section refers only to Intraweb for Delphi applications.
Starting with IntaWeb 5.1 the following export clause needs to be added into the project file (.dpr):

exports
 GetExtensionVersion,
 HttpExtensionProc,
 TerminateExtension;

This is necessary because of latest ISAPI and thread pooling modifications in IntaWeb.

ISAPI extensions stay in memory

For people not used to working with ISAPI, a common problem is "My ISAPI is loaded, and it won't
unload, is this normal ?"
Yes, it is. The server alone can decide whenever to unload the extensions from memory. The
unloading cannot be done from within the extension itself.
This design is intended to give a performance boost - opposed to CGI protocol, where the application
is loaded every time it's executed. The ISAPI modules stay in memory, this reducing the time required
to load. This system provides other advantages as well, like improved security and shared memory.

ISAPI extensions must be unloaded to be replaced

You may discover that, while developing, the executable (library) cannot be produced. This is a
common situation when working with ISAPI and it's caused by the web server, which has loaded the
ISAPI extension and still hasn't unload it. To continue your development you'll have to either unload
the ISAPI manually, or rename the output file. For instructions on how to remove the ISAPIs manually,
please see the documentation of the web server you are using.

ISAPI Manager

A solution to avoid the situation described previously is to use an intermediary DLL, which loads and
unloads your application ISAPI as needed. We recommend to use ISAPI Manager, which can be
downloaded from http://www.dataweb.de. Other tools that perform the same task are available.

How to unload from IIS

Apart from stopping and restarting the web server, IIS provides other means to unload the ISAPIs.
This will be done automatically if you do the following:

For IIS 3 or lower:

To turn ISAPI caching off you will have to change the following registry entry to 0:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\CacheExte
nsions
After changing this entry, restart the web server and ISAPIs won't be cached anymore.
To put the cache option back on, simply set the same value to 1 and restart the web server.

For IIS 4 or higher:

Right click on the script directory of your website, then select "Properties" and on the "Virtual
Directory" tab choose the "Configuration..." button. Deselect the "Cache ISAPI applications"
checkbox and click twice on "OK" to save the settings.

http://www.dataweb.de

Deployment 117

Copyright Atozed Software

What does the Use ISAPIThreadPool checkbox mean ?

When creating a new ISAPI application, the wizard displays the option "Use ISAPIThreadPool". If
checked, the unit ISAPIThreadPool unit will be included in the project.

According to Borland, for ISAPI apps the ISAPIThreadPool unit boosts scalability by using pooling
threads and by handling a lot more users and concurrent requests.

This option should be used only when the applications runs under IIS.

17.1.4.5 Useful ISAPI links

For setting up IIS properly:
www.microsoft.com/directory/article.asp?ID=kb;en-us;Q300991&SD=MSDN

For building your first Delphi ISAPI:
http://www.matlus.com/scripts/website.dll/Tutorials?DelphiISAPI&FirstISAPI&3

For debugging Delphi ISAPIs:
http://www.msdelphi.com
http://codecentral.borland.com/codecentral/ccweb.exe/listing?id=15348
http://community.borland.com/article/0,1410,23024,00.html

17.2 Methods

17.2.1 Notes

Applications developed with IntaWeb for Delphi can be deployed as a Windows service / Linux
daemon, a standalone executable, an ISAPI application, or an Apache DSO. Using page mode
IntaWeb applications can be deployed by other methods as well.

Applications developed with Intraweb for Visual Studio .NET can be deployed as standalone
executables or as ISAPI dlls.

17.2.2 Stand Alone

While writing your application in Delphi, you will probably use the standalone mode to debug your
application. When run as an application, a debugging screen appears with basic statistics. This screen
also contains an Execute (Run | Execute or F9) option, which can be used to test execute the
application in the browser. By clicking on it, the default browser will be launched with the
corresponding URL to test the application.

The StandAlone debug form

The default window in StandAlone mode allows you to perform very basic debugging operations.

http://www.matlus.com/scripts/website.dll/Tutorials?DelphiISAPI&FirstISAPI&3DelphiISAPI&FirstISAPI&3
http://www.msdelphi.com
http://codecentral.borland.com/codecentral/ccweb.exe/listing?id=15348
http://community.borland.com/article/0,1410,23024,00.html

IntraWeb Manual118

Copyright Atozed Software

The label marked (2) in the picture displays the number of active connections to the current
application.
The area marked with (1) in the picture represents the debug area.

To activate logging to the debug area, select "Options | Show Debug Information" from the menu.

Writing custom messages to the debug area

To write your custom messages in the debug area you may use the method "Log" of the StandAlone
window. In Intraweb for Delphi, the default StandAlone window is of type TFormIWMain and is
declared in the unit IWMain. In Intraweb for Visual Studio .NET the default StandAlone window is of
type Main declared in the Atozed.Intraweb.NETMain namespace.

The "Log" method takes a parameter AMsg of type string, which represents the message to be written
in the debug area.

Writing a custom StandAlone form

For a demonstration on writing your own custom StandAlone window in Delphi, please see the
Custom StandAlone demo.

17.2.3 ISAPI / NSAPI / Apache DSO / CGI / Win-CGI

Intraweb for Delphi

Applications developed using page mode can be deployed as ISAPI, Apache DSO, NSAPI, CGI, or
Win-CGI. Application mode executables may only be deployed as ISAPI, NSAPI or Apache DSO.

Intraweb for Visual Studio . NET

These kind of applications can be deployed only as ISAPI dlls.

Deployment 119

Copyright Atozed Software

17.2.4 Windows Service

Running IntaWeb applications as a service has its benefits and disadvantages. The disadvantages are
that there is no debug screen or execute menu item. The main advantage is that the there is no
requirement for logging on to the machine in order to run the application (like any other Windows
service). A few steps have to be taken prior to running the application as a service. In particular, it has
to be installed as such. To do so, using the windows command prompt, change to the directory where
the application resides and type:

Application_name –install

This will install it and the application will appear in the Services Applet. From there, it can be
configured to run automatically or manually. There is no need to activate the "Interact with Desktop"
under the properties of the service, and doing so will have no effect whatsoever.

In a similar way, if the need arises to uninstall the application, it can be done by typing:

Application_name –uninstall

Before executing this command, be sure to stop your service.

Notes
1. Only Windows NT, Windows 2000, and Windows XP support services. Windows 95, Windows 98

and Windows ME do not support services.
2. Services do not function in evaluation mode. Attempts to do so will result in errors.

17.3 Launch URLs

17.3.1 Linking to IntraWeb Applications

Since the whole user interface is based on a web browser, calling the application is done using a URL.
The URL has a very simple format.

Stand Alone Usage
Syntax: http://<server>:<port>
Example: http://www.atozedsoftware.com:4000

ISAPI Usage
Syntax: http://<server>/<script path>/<dll>
Example: http://www.atozedsoftware.com/iw/guess.dll

Apache DSO Usage
Syntax: http://<server>/<location>
Example: http://www.atozedsoftware.com/myapp

Launch URL Option
URL's are formed by specifying the host and adding the port number (if different to the default 80).
You can optionally specify a start text on the URL by setting the StartCmd property in the
ServerController and then adding the value of the URL For example:
http://www.atozedsoftware.com:4000/launch

17.3.2 Sessions

Every time this URL is entered into the browser and new session is created and the user is tracked
automatically throughout the whole period that the session lasts. Optionally, parameters can also be

IntraWeb Manual120

Copyright Atozed Software

specified when calling a new instance by passing them using POST or GET.

17.3.3 Passing Parameters

Parameters are passed to the application using the interrogation (?) sign after the start URL. Each
parameter consists of a "parameter name" and "parameter value". Parameters are separated from
each other using the ampersand (&) sign. The following examples show how to pass two parameters
named "param1" and "param2" with values "value1" and "value" respectively (Example is for
standalone):

http://www.atozedsoftware.com:4000?param1=value1¶m2=value2

These parameters are available in your application by accessing the RunParams property of the
TIWApplication object.
In addition, prelaunch changes can be performed in the ServerController.OnNewSession event. One
such use may be to read the parameters that have been passed in an offer different users different
starting forms.

IMPORTANT NOTE:

Some browser on Macintosh require the start parameter to have an additional / before the ?. For
example, the following:

http://<server>:8888?param1=value1

might not work correctly on some Macintosh browser and should be changed to:

http://<server>:8888/?param1=value1

Since nearly all browser accept /?, there should not be side-effects of adding / before the ? in all calls.

Deployment 121

Copyright Atozed Software

17.4 Converting Project Types

17.4.1 Converting from Standalone to ISAPI in Delphi

Lets take the Guess demo as an example:

program Guess;

uses
 Forms,
 IWMain,
 Main in 'Main.pas' {formMain: TIWFormModuleBase},
 ServerController in 'ServerController.pas' {IWServerController:
TDataModule};

{$R *.res}

begin
 Application.Initialize;
 Application.CreateForm(TFormIWMain, formIWMain);
 Application.Run;
end.

1. Change the program clause to library.
2. Remove the IWMain and Forms from the uses clause.
3. Add IWInitISAPI to the uses clause.
4. Remove everything between BEGIN..END.
5. Add IWRun between BEGIN..END.
6. Add GetExtensionVersion, HttpExtensionProc, TerminateExtension to the exports clause.

Your program should now look like this:

library GuessDLL;

uses
 ISAPIApp,
 IWInitISAPI,
 Main in 'Main.pas' {formMain: TIWFormModuleBase},
 ServerController in 'ServerController.pas' {IWServerController:
TDataModule};

{$R *.RES}
exports
 GetExtensionVersion,
 HttpExtensionProc,
 TerminateExtension;

begin
 IWRun;
end.

IntraWeb Manual122

Copyright Atozed Software

17.4.2 Converting from StandAlone to ISAPI in CBuilder

Open your bpr file in a text editor such as NotePad.

1. Change the EXE to DLL
2. Locate the line that says -tW -tWM"/> and add "D" after the first W
3. Change c0w32.obj to c0d32.obj
4. Save the changes and open the updated project file in C++ Builder
5. Remove IWMain and Forms from the uses clause
6. Add IWInitISAPI to the uses clause.
7. Build the project

--

Deployment 123

Copyright Atozed Software

17.4.3 Converting from ISAPI to StandAlone in Delphi

Lets take the GuessDLL demo as an example:

library GuessDLL;

uses
 IWInitISAPI,
 Main in 'Main.pas' {formMain: TIWFormModuleBase},
 ServerController in 'ServerController.pas' {IWServerController:
TDataModule};

{$R *.RES}

exports
 GetExtensionVersion,
 HttpExtensionProc,
 TerminateExtension;

begin
 IWRun;
end.

1. Change the library clause to program.
2. Remove the IWInitISAPI from the uses clause.
3. Add IWMain and Forms to the uses clause.
4. Remove everything between BEGIN..END
5. Add the lines below between BEGIN..END
6. Remove the exports clause.

Your program should now look like this:

program Guess;

uses
 Forms,
 IWMain,
 Main in 'Main.pas' {formMain: TIWFormModuleBase},
 ServerController in 'ServerController.pas' {IWServerController:
TDataModule};

{$R *.res}

begin
 Application.Initialize;
 Application.CreateForm(TFormIWMain, formIWMain);
 Application.Run;
end.

IntraWeb Manual124

Copyright Atozed Software

17.5 Additional Linux Information

17.5.1 Overview

IntaWeb applications which use TImage or TFrame will need the support of XWindows. Applications
which do not use these two components do not require X Window support.

Installing a full blown X Server on a Linux server machine is not desirable or even possible in many
cases. Instead you can run a special X server designed for web servers called X Virtual Frambe
Buffer, or Xvfb for short. Xvfb is used by thousands of CGI and Apache DSOs.

Xvfb is included in many distributions such as SUSE. If you do not have Xvfb you can obtain it from
one of the following URLs:

· http://www.xfree86.org/4.0.1/Xvfb.1.html

· http://chartworks.com/support/server/XvfbonUnix.html
· http://www.slac.stanford.edu/grp/cd/soft/unix/xvfb.html

Once it is installed you can use it by issuing:

Xvfb :99 &

No configuration is required.

Then before starting your IW app issue:

export DISPLAY=localhost:99.0

17.6 Application ports

When deploying the application, the application port should be chosen carefully.

Port numbers below 1024 are always reserved. Linux won't even let you the application them without
permissions.
Under Windows, the operating system will let the application run on any port, and it's the job of the
application to select an unused port.

It is in general a good idea to select a port superior to 1024 for your application. A port commonly
opened by firewalls and configured in proxies is 8080.

Whichever port you chose, verify before that no other application is using it.

http://www.xfree86.org/4.0.1/Xvfb.1.html
http://chartworks.com/support/server/XvfbonUnix.html
http://www.slac.stanford.edu/grp/cd/soft/unix/xvfb.html

Section

XVIII

IntraWeb Manual126

Copyright Atozed Software

18 Performance Evaluations

18.1 Tips

You will likely want to test the performance of your application. Many users test the performance
improperly and thus receive misleading results. When testing be aware of the following items that can
negatively impact your tests.

1. When using Internet Explorer, the first page will render quickly. However, when you click on a
button or a link from the first page, Internet Explorer will then load extra libraries and cause a
delay. This delay is caused by Internet Explorer and not the IntaWeb application. As you
move to successive pages, you will notice that this delay no longer exists.

2. When using a browser on the same machine as the server the network is forced to use the
"loopback" address. The loop-back address generally provides good performance however
sometimes will introduce delays into the transfer of data.

3. When using a browser on the same machine as the server, the browser, network and
application all compete for CPU, disk and memory at the same time. Most browsers are quite
CPU and memory intensive, and thus negatively impact the server and your results.

4. When using Netscape and running your application from Delphi, the Delphi debugger hooks
and Netscape conflict. Often you will have to task switch from the browser to the application
to "unstick" the local network.

5. Anytime you run your server from within Delphi or Visual Studio .NET, their debuggers are
active. The debugger not only consumes memory and CPU, but can also slow down the
execution of your application. Under normal circumstances, this is perfectly acceptable,
however keep this in mind if you are testing performance.

6. The first time you execute an ISAPI based application the web server must load the DLL and
this will cause for a delay.

To properly test performance, you should run your application and browser on separate machines.

Section

XIX

IntraWeb Manual128

Copyright Atozed Software

19 Scaling IntraWeb Applications

19.1 Scaling Methods

What if my application grows too big for one server to handle? Can IntaWeb scale? Sure it can.
IntaWeb can be scaled using a variety of methods. First also consider that in many applications you
can handle more with less CPU because App mode is stateful. Without state, applications often spend
a lot of CPU streaming state to a DB, reconstructing state, or needlessly rerunning queries against a
database. That being said, there are still times you need to scale.

Add Another Tier
Use MTS, COM, SOAP, ASTA, Midas, whatever and split that piece into multiple machines. This will
take processing out of the IntaWeb application and allow it to be distributed.

Beef Up You Database Server
Add more CPU power or memory to the database server. In many systems, the database is the
bottleneck, and the web application spends the majority of its time waiting on the database.

Add More Memory to Application Server
Check your memory usage and make sure that your application server has the appropriate amount of
memory. Virtual memory will be used if not enough physical memory is available, but this will slow
down the response time and consume CPU cycles. Eliminating the use of virtual memory will increase
efficiency and capacity.

Use a Multi-Processor Server
IntaWeb servers are fully threaded. Thus, IntaWeb servers will take advantage of multiple processors
if present.

Distribute the IntaWeb Application Itself
If you have reached a level requiring you to scale the actual IntaWeb application, this can be
accomplished as well. Please see Distributing the IntaWeb Application.

19.2 Distributing the IntraWeb Application

What will be presented here is not the only way that an IntaWeb application can be distributed, but it is
the most common. It is very simple, and effective. This method can also be used in conjunction with
the previously described methods.

Step 1 – Install Multiple Application Servers
Each server will need it's own IP address. For this example, we will simply refer to them as .1, .2 and
.3.

Step 2 – Create a New DNS Record
Create a new DNS entry to identify the application. For this example, we will use
iwapp.atozedsoftware.com.

Step 3 – Add Multiple IPs for the DNS Record
DNS allows multiple IPs to be assigned to a given record. In our example, we would assign .1, .2, .3 to
iwapp.atozedsoftware.com. When multiple IPs are assigned to a single record, the DNS server will
perform rotating DNS, sometimes also referred to as round robin. This means that the first request for
iwapp.atozedsoftware.com will return .1, the second will return .2, the third will return .3, the fourth will
return .1, and so on.

This will distribute the load across the servers. This method does not perform true load balancing, as it
does not measure the load, it just distributes it. In most applications, the law of averages applies and it

Scaling IntraWeb Applications 129

Copyright Atozed Software

is quite effective. If your application is such that it creates large imbalances, you will need to use a
load balancing DNS server instead.

Step 4 – Create a Redirect Entry
On each application server create a redirect entry using the primary web server's configuration, or a
page that performs a redirect to that servers actual IP. When the page or virtual entry is requested, the
browser will not know that it has been redirected to an IP by the DNS server, as this is part of its
normal operation. However, we must make sure that subsequent requests are routed to the same
application server, as IntaWeb is stateful. Note that this only applies to Application Mode, and not
Page mode. This step can be skipped for Page Mode.

The virtual entry or web page merely redirects the web browser to a URL containing its individual IP
instead of iwapp.atozedsoftware.com. For example if our URL is http://iwapp.atozedsoftware.com, this
entry might redirect the browser to . This URL demonstrates a stand alone IntaWeb application, but it
can be adjusted to redirect to a static page, an ISAPI version, or a DSO version. The important thing is
that the browser is redirected to the physical application server so each subsequent request will return
to that server.

Section

XX

Secure HTTP / SSL 131

Copyright Atozed Software

20 Secure HTTP / SSL

20.1 Introduction

If your application is deployed as an ISAPI DLL or an Apache DSO, you need to use the hosting web
server's SSL capabilities since it handles the HTTP protocol.

In Stand Alone mode, SSL is supported also. The first step is that you must obtain SSL certificates.

20.2 Enabling SSL

IntaWeb requires that your certificates are .pem format. To enable SSL support, follow these steps:
1. Download and install the SSL DLLs. Information on how to obtain the DLLs is available at

http://www.nevrona.com/indy/ssl.html . The DLLs are free.
2. Set the SSLPort in the ServerController to a value other than 0. The default for SSL support is

443. If you are running a standard web server on the same machine and it supports SSL, it will
already be using 443 and you will need to use another port.

3. Set the SSLCertificatePassword in the ServerController if you assigned a password to your
certificates.

4. Place your certificates in the same directory as the application. The certificates must be named:

· Cert.pem
· Root.pem
· Key.pem

If your certificates are not in .pem format, please see the section on converting to PEM format.

20.3 Converting Certificates to PEM Format

Converting Certificates to PEM Format
Chances are that your certificates were not delivered to you in .pem format. If they are not in .pem you
must convert them for use with IntaWeb.

This procedure assumes that you have already received your key and certificate pair from some
Certificate Authority (like Verisign or Thawte) and that you have them installed in Microsoft Internet
Explorer in Personal Certificates Store.

Export Certificate
Select the certificate and export it as a .pfx file (Personal Exchange Format). You may optionally
protect it with a password.

Convert .pfx to .pem
As part of the SSL download, a utility named openssl.exe was included. This utility will be used to
convert your .pfx file.
To use openssl.exe, use the following format:
openssl.exe pkcs12 –in <your file>.pfx –out <your file>.pem
Openssl.exe will prompt you for a password. Enter it if you used one, or leave it blank if you did not
specify one. It will also prompt you for a new password for the .pem file. This is optional, but if you
protect it with a password be sure to fill in the ServerController.SSLCertificatePassword property in
your application.

Splitting the .pem File
If you examine the new .pem file with a notepad, you will notice that it consists of two parts. The two
parts consist of the private key and the certificate (public key) part. There is also some addition
information included. IntaWeb requires that this information be separated into separate files.

IntraWeb Manual132

Copyright Atozed Software

Key.pem
Create key.pem with notepad and paste everything between and including these two statements:

-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

Cert.pem
Create cert.pem with notepad and paste everything between and including these two statements:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

Root.pem
The final file that IntaWeb requires is the Certificate Authority certificate file. You can obtain this from
the Internet Explorer in Trusted Root Certificate Authority dialog. Select the Authority that issued your
certificate and export it in Base64 (cer) format. This format is also the same as PEM format so after
export simply rename the file to root.pem.

20.4 Example

An Intraweb for Delphi example with a test certificate is included and can be seen by examining the
StandAloneSSL demo.

Index
- S -
step-by-step 102

Index 133

Copyright Atozed Software

IntraWeb Manual134

Copyright Atozed Software

	Welcome
	Other Documentation
	How IntraWeb Works
	Limitations of the Evaluation Version
	Technical Support
	License
	Credits, Acknowledgements and Copyrights
	Requirements
	Overview
	Supported Browsers
	Development Environments

	What's New
	Overview
	PDA Support

	Migration Guide
	6.0 to 7.0
	5.1 to 6.0
	5.0 to 5.1

	Installation
	Installation of License Keys
	Visual Studio.Net
	Delphi / C++ Builder
	Kylix
	Upgrading to a new version
	Delphi 7 Users

	Demos
	Quick Start
	Building A Demo Step By Step
	Features
	Guess
	GuessWB
	GuessMulti
	FishFact
	FishFactDM
	Phoenitics Customer Profiler
	StandAloneSSL
	WebSnapSurvey
	Custom StandAlone
	Back Button
	Page Forms
	FishMarket
	Die, Fly ! Die !
	WebMail32

	Debugging
	Getting Started
	Debug Output
	Detecting Errors on Startup
	Command Line Parameters

	Development
	Rethinking the User Interface
	Writing Your First IntraWeb Application
	Images and Graphics
	Extending IntraWeb
	Working with COM
	Working with ClientDataSet Components
	Working with PDA
	Miscellaneous

	Form Management
	Working with Forms
	Update Mode
	IntraWeb Frame
	Intraweb User Control
	Visual Form Inheritance
	Managing Forms
	Form List
	Showing Forms
	Hiding Forms
	Destroying Forms
	Passing Data Between Forms
	Note for C++ Builder users

	State Management
	Inherent State
	Restrictions
	Safe Storage
	Complex State and the Back Button
	Using the OnBackButton Event

	Session Management
	WebApplication Object
	Referencing the Session
	Lifetime
	Implementation
	Storing Additional Data
	Session Related Events
	Memory Consumption
	Component Reference
	How does Session Management Work?
	URL
	Cookies
	Hidden Fields

	Layout Managers and Templates
	What is a Layout Manager?
	Form Layout
	HTML Templates
	System Templates

	Server Controller
	What is the Server Controller?
	Properties

	Writing Custom Components
	Overview
	Under Construction
	Source Code
	Core Server
	Third Party Program

	Javascript
	Overview
	Areas of Implementation
	Using ScriptEvents
	Writing JavaScript events
	More Script Events

	Javascript Functions
	Common Functions

	Page Mode
	Introduction to Page Mode
	Working with Page Mode
	IntraWeb and Websnap
	Creating the Demo
	Running the Demo

	IntraWeb Pages (IWP)
	Introduction to IWP
	Creating the Project
	Preparing the server
	Creating an IWP page
	Creating an IWP form
	Deploying the files

	IntraWeb Caching Mechanism
	Caching Files

	Deployment
	Installation
	Overview
	External Files
	Permissions
	ISAPI
	Deploying in IIS
	ISAPI Utilities
	ISAPI Hosting
	Common ISAPI Issues
	Useful ISAPI links

	Methods
	Notes
	Stand Alone
	ISAPI / NSAPI / Apache DSO / CGI / Win-CGI
	Windows Service

	Launch URLs
	Linking to IntraWeb Applications
	Sessions
	Passing Parameters

	Converting Project Types
	Converting from Standalone to ISAPI in Delphi
	Converting from StandAlone to ISAPI in CBuilder
	Converting from ISAPI to StandAlone in Delphi

	Additional Linux Information
	Overview

	Application ports

	Performance Evaluations
	Tips

	Scaling IntraWeb Applications
	Scaling Methods
	Distributing the IntraWeb Application

	Secure HTTP / SSL
	Introduction
	Enabling SSL
	Converting Certificates to PEM Format
	Example

