
8 The Delphi Magazine Issue 41

Design Patterns
Implementing The Singleton Pattern
by Hallvard Vassbotn

In their book Design Patterns1,
Gamma et al (the ‘gang of four’)

lay the foundation for a new way of
approaching software design. The
book provides us with recipes for
solving typical problems encoun-
tered in software construction.
This lets us easily re-use knowl-
edge, even in the design stages of
development. The book also for-
malises documentation and under-
standing of a design pattern.

What Is A Design Pattern?
Let us first establish what we mean
by a design pattern. The idea
originally came from Christopher
Alexander, who proposed using a
pattern language to architect
buildings and cities. He said: ‘Each
pattern describes a problem which
occurs over and over again... and
then describes the core of the solu-
tion to that problem, in such a way
that you can use the solution a mil-
lion times over, without ever doing
it the same way twice’2.

The same thing applies to design
patterns as used in software con-
struction. Generally, a design pat-
tern has a specific name that
makes it easy to reference when
discussing possible solutions to a
problem. For instance, later in this
article we will look at a design pat-
tern with the name Singleton. The
pattern includes a description of
the problem it solves, to guide us
when it is appropriate to use it. The
main part is a description of the
solution with the different ele-
ments, how they relate to each
other, and so on. It is important
that this description is general, so
that it can easily be applied to dif-
ferent situations and implementa-
tion languages. Finally, there will
usually be a set of consequences
and trade-offs of using the pattern.

Implementation Language
As Gamma et al admit in their
introductory chapter, the choice of

implementation language will sig-
nificantly influence the design
problems you will meet and deci-
sions you have to make. If a specific
feature is missing from a language,
you may have to implement it your-
self. Unfortunately for us, Gamma
et al use only Smalltalk and C++ as
their example languages.

In this article we will first look at
the language elements that are
unique to Object Pascal when com-
pared to C++ and how this makes
many of the problems the design
patterns try to solve, non-existent,
or at least much easier to solve.
Then we will look at one example of
a very simple design pattern, the
Singleton pattern (pp 127-134 in
the book), and how this can best be
implemented in Delphi.

Object Pascal
As A Better Language
Many people (not to mention the
popular computer press) tend to
believe that Object Pascal (OP
from now on) has only a subset of
the language features of C++. While
it is true that OP lacks features like
multiple inheritance, operator
overloading (except for the array
subscript operator [..]) and tem-
plates, it still has an array of lan-
guage features not found in C++.
Over the years, OP has borrowed
many features from C++, for better
or for worse. I sincerely hope they
will not copy all of them: C++ is
such a complex language with
many pitfalls for both the novice
and experienced programmer.

If we look at the language ele-
ments which are unique to OP, we
find an amazing array of useful fea-
tures: units, sets, sub-ranges,
native DLL support, class types,
class reference variables, virtual

class methods, virtual construc-
tors, extensive runtime type infor-
mation (RTTI), message methods,
dynamic methods, the override
keyword, properties, the
try..finally clause, initialization
and finalization sections, variants,
threadvars, native COM support,
interfaces, packages, dynamic
arrays, interface delegation, the
automatic reference counting
mechanism and method pointers. I
could go on. This is not intended as
an exercise in C++ bashing, but
rather an attempt to heighten our
awareness of the goodies of OP
that we are enjoying daily.

Simplifying Design Patterns
These goodies also make it easier
to solve many of the design prob-
lems a typical programmer will
face again and again. The purpose
of having a set of design patterns
to follow is that old re-use slogan.
Re-use existing knowledge to
reduce the time spent and to avoid
the many possible traps you can
step into.

Of the many OP features, the one
that probably stands out from the
rest when it comes to structuring
code is the method pointer.
Method pointers allow us, in a way,
to override methods at runtime
and even change the override
dynamically. The override is not
limited to methods of a specific
class, the only requirement is that
the method follows a specific
parameter signature. This single
feature alone will eliminate the
need for, or greatly simplify, many
of the design patterns found in
Gamma et al, such as Chain of
Responsibility, Command, Media-
tor, Observer, Template Method
and Visitor. The existence of
method pointers will often let you
avoid having to declare a new
descandent class just to add new
behaviour. As we know from the
world of VCL components, we
usually only have to write an event
handler. After all, an event is
nothing more than a method

1. Design Patterns, Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. ISBN 0-201-63361-2,
Addison-Wesley Publishing Company, 1996. This book is highly recommended reading
for anyone doing object oriented programming in any language.

2. A Pattern Language, by Christopher Alexander and others, Oxford University Press, 1977.

10 The Delphi Magazine Issue 41

pointer exposed as a property of
an object.

The other vital language feature
when it comes to implementing
design patterns is the combination
of class reference variables and vir-
tual constructors. By using these
features, it is possible to create
classes whose type is not known
until runtime. Many of the
creational patterns in Gamma et al
exist only because C++ lacks this
nice feature. So there will often be
no need to use these patterns at all
in OP. Examples of this are
Abstract Factory, Factory Method
and Prototype.

The Singleton Pattern
As an example of a design pattern
and how to implement it in Delphi,
we will look at the Singleton pat-
tern. This is one of the simplest in
Gamma et al and it is used when we
want to ensure that there will be
only one instance of a particular
class in the application. This can
be very useful at times.

If we look at the VCL, many
classes are Singletons by intent
(for instance TApplication, TScreen
and TPrinter), but this is not
enforced in the design of the
classes.

For instance, there is nothing
stopping me from creating another
instance of the Tscreen class:

MyScreen :=
TScreen.Create(Application);

or, even worse, from freeing the
instance or clearing the instance
pointer, like this:

Screen.Free;
Screen := nil;

We will see how we can apply the
Singleton design pattern to create
classes that cannot be easily
broken like this.

Even if the goal of designing a
Singleton class might seem very
simple, there are a number of
points we must consider:
➢ When and by whom should the

single instance be created?
➢ When and by whom should the

single instance be destroyed?
➢ How should external clients get

access to the single instance?
➢ How can we avoid that the value

of the instance reference is
corrupted?

➢ How can we avoid illegal cre-
ation of additional instances?

➢ How can we avoid illegal de-
struction of the single instance?

➢ How can we keep the design of
the Singleton class, but still al-
low extension by inheritance?

For instance, the situation you are
facing might require that you keep
some kind of reference count on
the Singleton instance, so that it is
created the first time it is needed
and destroyed the last time it is
released.

Keeper Of The Time
For our example, we will imple-
ment a very simple Singleton class,
TTimeKeeper, that will return the
current date and time. The class
defines three read-only properties
that return the values of the
SysUtils functions Time, Date and
Now.

We will assume a model where
the instance is created the first

time it is needed, but destroyed
only when the application closes,
in the finalization section of the
unit.

We could give clients access to
the Singleton instance by provid-
ing them with a global instance
variable in the interface section,
but as we have seen with the
Screen variable, this is not ideal as
we have no protection of clients
overwriting the instance variable.

The approach I have found to be
both robust and readable is to use
a simple function that returns the
required instance. Then we can
move the actual instance variable
into the implementation section to
protect it from external modifica-
tions. This is analogous to moving
a field from the public to the
private part of a class.

To create an even more object
oriented interface, we keep the
actual implementation in a class
function called Instance, and let
the global function be a friendly
wrapper: see Listing 1.

Lifetime Protection
My first attempt at prohibiting ille-
gal creation and destruction of our
Singleton instance was too naive. I
simply moved the Create construc-
tor and Destroy destructor into the
private part of the class declara-
tion. My thinking was that they
would then not be available for use
outside the unit.

Unfortunately, this does not
work. There is no way to reduce
the visibility of already existing
methods. In fact, in Delphi 4 they
added a new hint to the compiler.
As the help file states:

Overriding virtual method
<class>.<method> has a
lower visibility than the base
class.

Even if you try this, the help file
goes on to say:

...the method will maintain
the original (higher) visibil-
ity. In practice this is never
harmful, but it can be confus-
ing to someone reading the
source code.

My next idea was better. We add
new class methods that obscure
the visibility of the TObject meth-
ods of the same name:

➤ Listing 1

var
TimeKeeperInstance: TTimeKeeper = nil;

class function TTimeKeeper.Instance: TTimeKeeper;
begin
if not Assigned(TimeKeeperInstance) then
TimeKeeperInstance := TTimeKeeper.Create;

Result := TimeKeeperInstance;
end;
class procedure TTimeKeeper.Shutdown;
begin
if Assigned(TimeKeeperInstance) then begin
TimeKeeperInstance.Destroy;
TimeKeeperInstance := nil;

end;
end;
function TimeKeeper: TTimeKeeper;
begin
Result := TTimeKeeper.Instance;

end;
finalization
TTimeKeeper.Shutdown;

12 The Delphi Magazine Issue 41

public
class procedure Create;
class procedure Free(
Dummy: integer);

class procedure Destroy(
Dummy: integer);

To ensure that we get a compile
time error if anyone tries to call the
Freemethod or Destroydestructor,
we add a dummy parameter to the
corresponding class methods. In
addition, we obscure the Create
constructor with a class proce-
dure, so that people trying to
access the function result, would
also get a compile error. Note that
the declaration of the Destroy class
procedure will now generate a
compile-time warning: we will fix
this later.

The alert reader will object (sic)
and say that the Destroydestructor
can still be used by casting our Sin-
gleton instance into a TObject, like
this:

TObject(Singleton).Destroy;

This will still destroy our precious
Singleton instance. To get around
this problem, we must override the
Destroy destructor and disable it
completely by raising an exception
if it is ever called, that should teach
them! However, we still need a con-
structor and destructor for private
use, so we declare new ones in the
protected section, SingletonCreate
and SingletonDestroy.

If we try to override the Destroy
destructor in the same class as we
declare the Destroy class proce-
dure, we will generate an Identifier
redeclared error. To get around
this, we inherit from another class
where the Destroy destructor has
already been overridden and
disabled (Listing 2).

After doing all this, we have the
situation shown in Listing 3 if we
try to call Create, Destroy or Free
directly or indirectly (this is
example code from another unit).

This is exactly the situation we
want for a Singleton class. We have
access to the single instance, but
we cannot overwrite it or free it.
Neither can we create new
instances of the class (and thus
break the Singleton design).

Inheriting Singleton Classes
There might be cases where you
want to ensure that you only have
one instance of a class, but you still
need the flexibility of declaring a
descendant class and creating an
instance of that class instead. To
support this, we provide a class
procedure to set a class reference
variable of the class we want to
create. This would typically be
called from within the initializa-
tion section of the unit containing
the descendant class (Listing 4).

As we can see from the code, we
only allow a change of the class
type if the Singleton instance has
not yet been created. Since we
have no proper class fields we keep
the class reference in another
global variable in the implementa-
tion section of the unit. We must
also update the Instance class

function to use this class reference
instead of the hard-coded
TTimeKeeper value (Listing 5).

The logic of the code stays the
same: we have just added an
Assert statement to make sure the
class reference has a valid value
and then use it to create the Sin-
gleton instance. Note that the
SingletonCreate constructor must
be declared virtual for this to
work properly.

The Complete Picture
Now we have found an implemen-
tation that follows the initial
design goals well. The complete
TTimeKeeper Singleton class can be
found in Listing 6.

Generalising The Solution
We have now found one satisfac-
tory implementation of the

➤ Below: Listing 5➤ Above: Listing 4

➤ Below: Listing 3➤ Above: Listing 2

type
TInvalidateDestroy = class(TObject)

...
TTimeKeeper = class(TInvalidateDestroy)

...
class procedure TInvalidateDestroy.SingletonError;
// Raise an exception in case of illegal use
begin
raise ESingleton.CreateFmt('Illegal use of %s singleton instance!',
[ClassName]);

end;
destructor TInvalidateDestroy.Destroy;
// Protected against use of default destructor
begin
SingletonError;

end;

var
MyTimeKeeper: TTimeKeeper;

begin
TimeKeeper := nil; // Will not compile
MyTimeKeeper := TTimeKeeper.Create; // Will not compile
TimeKeeper.Free; // Will not compile
TimeKeeper.Destroy; // Will not compile
TObject(TimeKeeper).Destroy; // Compiles, but raises exception at runtime
TObject(TimeKeeper).Free; // Compiles, but raises exception at runtime

var
TimeKeeperClass: TTimeKeeperClass = TTimeKeeper;

class procedure TTimeKeeper.SetTimeKeeperClass(
aTimeKeeperClass: TTimeKeeperClass);

// Allow change of instance class
begin
Assert(Assigned(aTimeKeeperClass));
if Assigned(TimeKeeperInstance) then
SingletonError;

TimeKeeperClass := aTimeKeeperClass;
end;

class function TTimeKeeper.Instance: TTimeKeeper;
// Single Instance function - create when first needed
begin
Assert(Assigned(TimeKeeperClass));
if not Assigned(TimeKeeperInstance) then
TimeKeeperInstance := TimeKeeperClass.SingletonCreate;

Result := TimeKeeperInstance;
end;

January 1999 The Delphi Magazine 13

Singleton design pattern. However,
the OOP purist in me is bothered
by all that code. What if I need to
implement a number of different
Singleton classes? Do I really have
to write all that code for each one?

The answer is, of course, no. If
there are potentially many uses for
the general Singleton class, we
should make it re-usable. Let us try
to factor out the Singleton specific
parts of TTimeKeeper and move
them to a separate class, say
TSingleton. The goal is to keep as
little code as possible in the
HVTimeKeeper unit, while still keep-
ing all the benefits from the
Singleton design.

Implementing Class Fields
The only major obstacle I faced
when doing this was the recurring
fact that there are no class fields in
Object Pascal. The problem is that
we have simulated class fields by
using simple global variables in the
implementation section. This works
fine for a single class, but the
model breaks down once you intro-
duce inheritance into the picture.
All the classes will share the single
global variable with the base class,
potentially stepping on each
other’s feet.

The concept of class fields is
such an unusual one for most
Pascal programmers that many

find it hard to grasp how they
should work if they were indeed a
part of the language. In OP we do
have hard-coded, read-only, class
fields, such as ClassName,
InstanceSize, RTTI pointers and so
on. These are accessed through
class functions, but the actual
information is stored as part of the
extended VMT (virtual method
table). This is how class fields
should be implemented as well. A
class field follows the VMT, so
each new derived class has a
separate copy of the class field
slot.

unit HVTimeKeeper;
interface
uses SysUtils;
type
ESingleton = class(Exception);
TInvalidateDestroy = class(TObject)
protected
class procedure SingletonError;

public
destructor Destroy; override;

end;
TTimeKeeper = class;
TTimeKeeperClass = class of TTimeKeeper;
TTimeKeeper = class(TInvalidateDestroy)
private
class procedure Shutdown;
function GetTime: TDateTime;
function GetDate: TDateTime;
function GetNow: TDateTime;

protected
// Allow descendants to set new class for the instance
class procedure SetTimeKeeperClass(aTimeKeeperClass:
TTimeKeeperClass);

// Actual constructor and destructor that will be used
constructor SingletonCreate; virtual;
destructor SingletonDestroy; virtual;

public
// Not for use - for obstruction only
class procedure Create;
class procedure Free(Dummy: integer);

{$IFNDEF VER120} {$WARNINGS OFF} {$ENDIF}
// This generates a warning in Delphi 3. Delphi 4 has
// the reintroduce keyword to solve this
class procedure Destroy(Dummy: integer);
{$IFDEF VER120} reintroduce; {$ENDIF}
// Simple interface:
class function Instance: TTimeKeeper;
property Time: TDateTime read GetTime;
property Date: TDateTime read GetDate;
property Now: TDateTime read GetNow;

end;
{$IFNDEF VER120} {$WARNINGS ON} {$ENDIF}
function TimeKeeper: TTimeKeeper;
implementation
class procedure TInvalidateDestroy.SingletonError;
// Raise an exception in case of illegal use
begin
raise ESingleton.CreateFmt(
'Illegal use of %s singleton instance!', [ClassName]);

end;
destructor TInvalidateDestroy.Destroy;
// Protected against use of default destructor
begin
SingletonError;

end;
var
TimeKeeperInstance: TTimeKeeper = nil;
TimeKeeperClass: TTimeKeeperClass = TTimeKeeper;

class procedure TTimeKeeper.SetTimeKeeperClass(
aTimeKeeperClass:TTimeKeeperClass);

// Allow change of instance class
begin
Assert(Assigned(aTimeKeeperClass));
if Assigned(TimeKeeperInstance) then
SingletonError;

TimeKeeperClass := aTimeKeeperClass;
end;

class function TTimeKeeper.Instance: TTimeKeeper;
// Single Instance function - create when first needed
begin
Assert(Assigned(TimeKeeperClass));
if not Assigned(TimeKeeperInstance) then
TimeKeeperInstance := TimeKeeperClass.SingletonCreate;

Result := TimeKeeperInstance;
end;
class procedure TTimeKeeper.Shutdown;
// Time to close down the show
begin
if Assigned(TimeKeeperInstance) then begin
TimeKeeperInstance.SingletonDestroy;
TimeKeeperInstance := nil;

end;
end;
constructor TTimeKeeper.SingletonCreate;
// Protected constructor
begin
inherited Create;

end;
destructor TTimeKeeper.SingletonDestroy;
// Protected destructor
begin
// We cannot call inherited Destroy; here!
// It would raise an ESingleton exception

end;
// Protected against use of default constructor
class procedure TTimeKeeper.Create;
begin
SingletonError;

end;
// Protected against use of Free
class procedure TTimeKeeper.Free(Dummy: integer);
begin
SingletonError;

end;
// Protected against use of default destructor
class procedure TTimeKeeper.Destroy(Dummy: integer);
begin
SingletonError;

end;
// Property access methods
function TTimeKeeper.GetDate: TDateTime;
begin
Result := SysUtils.Date;

end;
function TTimeKeeper.GetNow: TDateTime;
begin
Result := SysUtils.Now;

end;
function TTimeKeeper.GetTime: TDateTime;
begin
Result := SysUtils.Time;

end;
// Simplified functional interface
function TimeKeeper: TTimeKeeper;
begin
Result := TTimeKeeper.Instance;

end;
initialization
finalization
// Destroy when application closes
TTimeKeeper.Shutdown;

end.

➤ Listing 6

14 The Delphi Magazine Issue 41

As we have no user-defined class
fields and because of the obvious
shortcomings of the simple global
variables we used in our first
attempt, we must find a better solu-
tion. One possible approach is to
add a virtual class function that
will return the address of the
global variable in the descendant
class. This will work, but it is fairly
involved, as the descendant must
always remember to override the
class function. Also, there must be
one class function for each sepa-
rate variable.

The solution which I eventually
decided on is to use a registration
scheme. The base class keeps a
global TList that keeps all the
global variables for all descen-
dants. As new descendants are
declared, they must register them-
selves (typically in the initializa-
tion section of the unit). As each
class registers itself, a new slot in
the TList is allocated and a handle
is returned to the client class. The
handle is actually the index of the
used slot in the TList, but this is
invisible to the client.

In our case we need two TLists:
one to keep the instance pointers
of the Singleton objects
(SingletonInstances) and one to
contain the corresponding class
references to decide what class
will be instantiated at runtime
(SingletonClasses). The two lists
grow in parallel and are always in
synchronisation with each other. If
we needed more than two fields
per registration then I would

recommend keeping them in a sep-
arate object and having a pointer
to the object in a single list instead.

In addition to the registration
mechanism, we also allow descen-
dants to override the class that will
be used for a specific instance.
This is done by sending in the origi-
nal base class reference and the
new class reference that should
replace it. The SingletonClasses
list is searched until the base class
is found. Assuming that the corre-
sponding instance in the
SingletonInstances list has not
already been created, the class ref-
erence is then overwritten with the
new value. This ensures that the
new class will be used when the
Singleton instance is first needed.

The final implementation of the
general TSingleton class can be
seen in Listing 7.

Generalising the implementa-
tion of the Singleton pattern has
made it more complex, but it has
the benefit of simplifying writing
new Singleton classes. Simply
inherit from the TSingleton class
and call the RegisterSingleton-
Class function. Our TTimeKeeper
class can now be written in far
fewer lines: see Listing 8.

There are only three major
changes here, besides removing all
of that support code. In the ini-
tialization section of the unit, we
call the RegisterSingletonClass
function to register ourselves as a
Singleton class. This function
returns a handle that we store in
the global variable TimeKeeper
Handle. In the Instance class func-
tion we call InstanceOf with our

newly acquired handle as a param-
eter. This will take care of creating
the correct class and returning the
correct instance to us. It’s all
pretty simple, isn’t it?

Extending The Singleton
We have talked about the need to
extend a given Singleton class by
inheriting from it, but we have not
shown how to do this in practice.
Let us make a simple extension to
the time keeper class.

The new class, TExtTimeKeeper,
will add a couple of new properties
and register itself so that it will be
used instead of TTimeKeeper. The
new properties will firstly return a
string representation of the cur-
rent date and time and secondly
return a string representing the
day of the week: see Listing 9 for
the code.

Because the public interface of
the class has been extended, we
must also create a new function to
return the Singleton instance to
clients. This is to avoid the need
for typecasts when accessing the
new properties. Other than that,
the only requirement is that we
must call the Override
SingletonClass procedure. We do
this in the initialization section
and specify that we want to
replace the TTimeKeeper Singleton
with our own version. This
assumes that TTimeKeeper has
already been registered. In this
case it will, because we are using
the HVTimeKeeper2 unit and

unit HVTimeKeeper2;
interface
uses HVSingleton;
type
TTimeKeeper = class(TSingleton)
private
function GetTime: TDateTime;
function GetDate: TDateTime;
function GetNow: TDateTime;

public
class function Instance: TTimeKeeper;
property Time: TDateTime read GetTime;
property Date: TDateTime read GetDate;
property Now: TDateTime read GetNow;

end;
function TimeKeeper: TTimeKeeper;
implementation
uses SysUtils;
var TimeKeeperHandle: TSingletonHandle;
class function TTimeKeeper.Instance: TTimeKeeper;
// Single Instance function - create when first needed
begin
Result := TTimeKeeper(InstanceOf(TimeKeeperHandle));

end;

// Property access methods
function TTimeKeeper.GetDate: TDateTime;
begin
Result := SysUtils.Date;

end;
function TTimeKeeper.GetNow: TDateTime;
begin
Result := SysUtils.Now;

end;
function TTimeKeeper.GetTime: TDateTime;
begin
Result := SysUtils.Time;

end;
// Simplified functional interface
function TimeKeeper: TTimeKeeper;
begin
Result := TTimeKeeper.Instance;

end;
initialization
TimeKeeperHandle :=
TTimeKeeper.RegisterSingletonClass(TTimeKeeper);

end.

➤ Listing 8

➤ Facing page: Listing 7

January 1999 The Delphi Magazine 15

unit HVSingleton;
interface
uses
SysUtils;

type
ESingleton = class(Exception);
TInvalidateDestroy = class(TObject)
protected
class procedure SingletonError;

public
destructor Destroy; override;

end;
TSingletonOpaqueInfo = record end;
TSingletonHandle = ^TSingletonOpaqueInfo;
TSingleton = class;
TSingletonClass = class of TSingleton;
TSingleton = class(TInvalidateDestroy)
private
class procedure Startup;
class procedure Shutdown;

protected
// Allow descendants to register themselves
class function RegisterSingletonClass(aSingletonClass:
TSingletonClass): TSingletonHandle;

// Allow descendants to set new class for the instance:
class procedure OverrideSingletonClass(
BaseSingletonClass, NewSingletonClass:
TSingletonClass);

// Interface for descendants to get instance pointer
class function InstanceOf(Handle: TSingletonHandle):
TSingleton;

// Actual constructor and destructor that will be used:
constructor SingletonCreate; virtual;
destructor SingletonDestroy; virtual;

public
// Not for use - for obstruction only:
class procedure Create;
class procedure Free(Dummy: integer);

{$IFNDEF VER120} {$WARNINGS OFF} {$ENDIF}
// This generates a warning in D3. D4 has the
// reintroduce keyword to solve this
class procedure Destroy(Dummy: integer);
{$IFDEF VER120} reintroduce; {$ENDIF}

end;
{$IFNDEF VER120} {$WARNINGS ON} {$ENDIF}
implementation
uses
Classes;

class procedure TInvalidateDestroy.SingletonError;
// Raise an exception in case of illegal use
begin
raise ESingleton.CreateFmt(
'Illegal use of %s singleton instance!', [ClassName]);

end;
destructor TInvalidateDestroy.Destroy;
// Protected against use of default destructor
begin
SingletonError;

end;
var
SingletonInstances : TList; { of TSingletons }
SingletonClasses : TList; { of TSingletonClasses }

class procedure TSingleton.Startup;
begin
SingletonInstances := TList.Create;
SingletonClasses := TList.Create;

end;
class procedure TSingleton.Shutdown;
var
SingletonInstance: TSingleton;
i : integer;

begin
// Free any singleton instances
for i := SingletonInstances.Count-1 downto 0 do begin
SingletonInstance :=
TSingleton(SingletonInstances.List^[i]);

if Assigned(SingletonInstance) then
SingletonInstance.SingletonDestroy;

end;
// Free the lists
SingletonInstances.Free;
SingletonInstances := nil;
SingletonClasses.Free;
SingletonClasses := nil;

end;
class function TSingleton.RegisterSingletonClass(
aSingletonClass: TSingletonClass): TSingletonHandle;

// Register a new Singleton class and allocate space for the
// instance pointer
var Index: integer;
begin
Assert(Assigned(aSingletonClass));
Assert(
SingletonClasses.IndexOf(Pointer(aSingletonClass)) < 0);

SingletonClasses.Add(Pointer(aSingletonClass));
// Return the index of the instance pointer as a handle
Index := SingletonInstances.Add(nil);
Result := TSingletonHandle(Index);
Assert(SingletonClasses.Count = SingletonInstances.Count);

end;
class procedure TSingleton.OverrideSingletonClass(
BaseSingletonClass, NewSingletonClass: TSingletonClass);

// Allow change of instance class
var
ThisClass: TSingletonClass;
i : integer;

begin
Assert(Assigned(BaseSingletonClass));
Assert(Assigned(NewSingletonClass));
Assert(BaseSingletonClass <> TSingleton);
Assert(
NewSingletonClass.InheritsFrom(BaseSingletonClass));

for i := 0 to SingletonClasses.Count-1 do begin
ThisClass := TSingletonClass(SingletonClasses.List^[i]);
if ThisClass.InheritsFrom(BaseSingletonClass) and
(SingletonInstances.List^[i] = nil) then begin
SingletonClasses.List^[i] :=
Pointer(NewSingletonClass);

Exit;
end;

end;
// If we get here, the base class was not found or
// an instance had already been created
SingletonError;

end;
class function TSingleton.InstanceOf(
Handle: TSingletonHandle): TSingleton;

// Single Instance function - create when first needed
var Index: Integer;
begin
// Convert the handle back to an index
Index := Integer(Handle);
Assert((Index >= 0) and
(Index <= SingletonInstances.Count-1));

Assert(Assigned(SingletonClasses.List^[Index]));
if not Assigned(SingletonInstances.List^[Index]) then
SingletonInstances.List^[Index] :=
TSingletonClass(
SingletonClasses.List^[Index]).SingletonCreate;

Result := SingletonInstances.List^[Index];
end;
constructor TSingleton.SingletonCreate;
// Protected constructor
begin
inherited Create;

end;
destructor TSingleton.SingletonDestroy;
// Protected destructor
begin
// We cannot call inherited Destroy; here!
// It would raise an ESingleton exception

end;
// Protected against use of default constructor
class procedure TSingleton.Create;
begin
SingletonError;

end;
// Protected against use of Free
class procedure TSingleton.Free(Dummy: integer);
begin
SingletonError;

end;
// Protected against use of default destructor
class procedure TSingleton.Destroy(Dummy: integer);
begin
SingletonError;

end;
initialization
TSingleton.Startup;

finalization
TSingleton.Shutdown;

end.

TTimeKeeper is registered in that
unit’s initialization section.

This process could theoretically
be repeated as we wish, by adding
descendants to TExtTimeKeeper and
so on. Note that if more than one

descendant of TTimeKeeper calls
OverrideSingletonClass, the last
one will actually be used. There is
no check to guard against this situ-
ation, but it would be very easy to
add one.

Demonstration Project
On the disk you will find a simple
demo project that utilises the
three different time keeper classes
we have presented: see the
screenshot on the next page.

16 The Delphi Magazine Issue 41

It is not very exciting in itself, but it illustrates that
the classes work as intended and that the security mea-
sures we added to avoid illegal use of the Singleton
classes, serve their purpose.

unit HVExtTimeKeeper;
interface
uses HVTimeKeeper2;
type
TExtTimeKeeper = class(TTimeKeeper)
private
function GetNowStr: string;
function GetTodayName: string;

public
property NowStr: string read GetNowStr;
property TodayName: string read GetTodayName;

end;
// New access function is only needed if the public
// interface has been extended
function TimeKeeper: TExtTimeKeeper;
implementation
uses SysUtils;
function TExtTimeKeeper.GetNowStr: string;
begin
Result := SysUtils.DateTimeToStr(Self.Now);

end;
function TExtTimeKeeper.GetTodayName: string;
begin
Result := SysUtils.LongDayNames[
SysUtils.DayOfWeek(Self.Date)]

end;
// Simplified functional interface
function TimeKeeper: TExtTimeKeeper;
begin
Result := TExtTimeKeeper(TExtTimeKeeper.Instance);

end;
initialization
// Register ourselves as the new TTimeKeeper class
TExtTimeKeeper.OverrideSingletonClass(
TTimeKeeper, TExtTimeKeeper);

end.

➤ Listing 9

Conclusion
Singletons are of the simplest kind of design patterns.
Even so, implementing one in Object Pascal has been a
rewarding and learning experience. Language features
such as class methods and class references have
helped us a long way, while the lack of class fields
forced us to work a little harder. In the future we might
look at other design patterns and see how they can be
implemented using Object Pascal.

Hallvard Vassbotn is a Senior Software Developer at
Reuters Norge AS, Falcon R&D. You can reach him at
hallvard@falcon.no

	What Is A Design Pattern?
	Implementation Language
	Object Pascal As A Better Language
	Simplifying Design Patterns
	The Singleton Pattern
	Keeper Of The Time
	Lifetime Protection
	Inheriting Singleton Classes
	The Complete Picture
	Generalising The Solution
	Implementing Class Fields
	Extending The Singleton
	Demonstration Project
	Conclusion

