[image: image19.jpg]
	[image: image18.jpg]
	V 1.0.5

AnyDAC
Architecture Guide

Version 1.0.5

1
Introduction
4
2
How is AnyDAC structured?
5
2.1
Layers and Packages
5
2.2
Naming Conventions
5
2.3
Stan Layer
6
2.4
Phys layer
7
2.5
DApt Layer
8
2.6
DatS Layer
8
2.7
GUIx Layer
9
2.8
Comp Layer
10
3
Stan Layer
11
3.1
Interface Factory
12
3.2
Resource pooling
13
3.3
Error handling
15
3.4
Expression evaluation
17
3.5
Persistent definition list
18
3.6
Persistent connection definition list
22
3.7
Async operation execution
23
3.8
Parameters and macros
25
3.9
Options
25
3.10
Debug monitoring
27
4
DatS Layer
31
4.1
DatS Manager
33
4.2
DatS Table
33
4.2.1
DatS Column
33
4.2.2
DatS Row
35
4.2.3
DatS constraint
38
4.2.4
DatS View
39
5
Phys Layer
43
5.1
Phys Driver
44
5.2
Phys Layer manager
46
5.3
Driver definition file
47
5.4
Phys connection
48
5.5
Phys command
50
5.5.1
Macro processing
54
5.5.1.1
Substitution variables
54
5.5.1.2
Escape sequences
54
5.5.2
Asynchronous execution
56
5.5.3
Batch command execution
57
5.5.4
Stored procedure execution
58
6
DApt Layer
60
6.1
Structure Mapping
61
6.2
Posting updates to DB
63
6.2.1
DatS Table Adapter
63
6.2.2
DatS Manager Adapter
64
6.2.3
Concurrency Control
65
6.2.4
Row Refreshing
66
6.2.5
Commands Handling
68
6.2.6
Error Handling
68
Appendix 1. TADDataType
69
Appendix 2. Macro data types
71
Appendix 3. Top level interfaces and GUID’s
72
Appendix 4. Connection definition parameters
73
Appendix 5. Macro functions.
74

1 Introduction

[image: image1.jpg]
Figure 1 AnyDAC Overview

AnyDAC Architecture provides information about layers and packages composing AnyDAC and their interaction. This document is a road map for AnyDAC users and allows orienting in AnyDAC software. The guide also explains design decisions made by us to achieve AnyDAC. To meet the quality requirements to use AnyDAC in mission critical database application the emphasis was put on four main factors:

· Stability

· Performance

· Flexibility

· Extendibility

In this document you will not find guidelines on how to use the components of AnyDAC. For Information about how to write efficient AnyDAC applications please read the AnyDAC Programmer’s Guide.

2 How is AnyDAC structured?

2.1 Layers and Packages

The AnyDAC framework was designed using a layered approach. Each layer defines a set of interfaces through which a clean communication between components of different layers is possible. All interfaces of each layer belong to the Coml package. Packages were used as a way to structure AnyDAC Delphi code. An AnyDAC layer can consist of 1 or more packages, whereas a package belongs to maximum one layer.

The interfaces from the Coml package build a communication bus. This allows designing an AnyDAC application in independent sub-systems. The different sub-systems can then interact as a unit through the common bus.

[image: image2.wmf]Comp Layer

Comp

Package

GUIx Layer

GUIxForms

Package

GUIxServices

Package

DatS Layer

DatS

Package

DApt Layer

DApt

Package

Phys Layer

Phys

Package

dbExp

Package

Oracl

Package

MySQL

Package

Stan Layer

Stan Package

Layers

ComI Package

.........

Moni FlatFile

Package

Moni Remote

Package

Figure 2 AnyDAC Layers Overview

For each AnyDAC layer there exists a package with the same name. The package contains common layer code. An AnyDAC layer can contain additional so called “alternative” packages. This is to extend the AnyDAC framework with other “alternative” implementations of its layer interfaces. The alternative packages are optional, because are one of possible implementations. For example, the Phys layer has two alternative packages (there are much more drivers! <g>), Oracle and MySQL. Each of them is an alternative implementation of the Phys layer interfaces. The Oracle package implements data access to the ORACLE RDBMS and the MySQL package to the MySQL database.

2.2 Naming Conventions

	Short Name
	Long Name

	Stan Layer
	Standard classes, interfaces, routines, constants, etc

	Phys Layer
	Physical Access Layer

	DApt Layer
	Data Adapter

	DatS Layer
	Data Store (Local)

	Comp Layer
	non visible Components

	GUIx Layer
	visible Components and Forms = GUI

	ComI
	Common Interfaces

The name of an AnyDAC layer or package is 4 characters long.

The unit names in the AnyDAC framework are built of a prefix + layer name + unit role + unit sub role. So, the unit names as daAD<layer name><unit role>[<unit sub role>] will best reflect their containment. For example, a unit defining a layer interfaces would be called daADPhysIntf.

2.3 Stan Layer
	Layer Name
	Stan

	Packages
	Stan,
MoniIndy,
MoniFlatFile

	Uses Packages
	ComI

	Interface Unit
	daADStanConst
daADStanError
daADStanFactory
daADStanIntf
daADStanOption
daADStanParam
daADStanResStrs
daADStanTracer
daADStanUtil

The Stan layer is a set of common classes, routines and constants. The layer implements the following main facilities:

· Persistent definition list

· Persistent connection definition list

· Error handling

· Expression parsing and execution

· Resource pooling

· Asynchronous operation execution

· Macros and parameters

· AnyDAC options handling

· Software-debugging capabilities

The MoniXXX packages provide AnyDAC software-debugging capabilities. More precisely, they implements debug monitor interfaces, which allow monitoring the interaction between AnyDAC application and the DBMS. In a specific application environment these interfaces could be implemented using some sort of message transport. Today AnyDAC has 2 implementations – one for interactive monitoring and another one for generating a trace file.

Interactive monitoring implementation is based on the Indy TCP/IP components. And is in MoniIndy package. This package assumes the existence of some external monitoring application to which the AnyDAC monitor client will communicate. $(AnyDAC)\Tool\Monitor\ADMonitor.dpr is standard one, supplied with AnyDAC.

Trace file implementation is in MoniFlatFile package.

2.4 Phys layer

	Layer Name:
	Phys

	Packages:
	Phys

DbExp, ODBC, Oracl, MySQL, MSAcc, MSSQL, DB2, ASA

	Uses Packages:
	Coml, Stan, DatS

	Interface Units:
	daADPhysIntf

The Phys layer defines interfaces for physical data access. It implements them in a separate packages as drivers, whereas each driver package belongs to the Phys layer and implements the required interfaces using appropriate DBMS API. The Phys Manager singleton object, which is the entry point, controls the layer. The main Phys layer interfaces are:

· IADPhysDriver

Represents the AnyDAC driver API.

· IADPhysConnection

Controls the physical database connection and transactions.

· IADPhysCommand

Executes RDBMS commands and fetches the result data.

· IADPhysMetaInfoCommand
Retrieves RDBMS object’s Meta information.

2.5 DApt Layer

	Layer name
	DApt

	Packages
	DApt

	Uses packages
	Coml, Stan, DatS

	Interface unit
	daADDAptIntf
daADDAptColumn

The DApt layer allows automation and fine-tuning of read operation with complex result sets (master-details, nested, ADT, etc) and allows posting back updates to the database system. The DApt layer is the Phys layer’s superstructure and cannot be used on its own. However, it is convenient to use the Phys layer without the DApt layer. The main DApt layer classes and interfaces are:

· TADDAptColumnMapping. Maps individual column of a result set to a column of the local data storage.

· TADDAptColumnMappings. Maps SELECT list of a result set to a column list of the local data storage.

· IADDAptTableAdapter. Specifies, how local data storage table should be filled from IADPhysCommand and how changes are posted back.

· IADDAptTableAdapters. It is a list of table adapters.

· IADDAptSchemaAdapter. Specifies, how the local data storage should be filled and, how changes should be posted back.

2.6 DatS Layer

	Layer name
	DatS

	Packages
	DatS

	Uses packages
	Stan, ComI

	Interface unit
	daADDatSManager

DatS layer does not have a dedicated interface unit like other AnyDAC layers. That is due to the current implementation and is subject to change in future.

DatS layer is a Local Data Storage implementation, which is analogue to the ADO.Net’s DataSet and its related objects (DataTable, DataRow, DataView). See Ado.Net documentation for details. It is an in-memory data engine, which may be filled with data and structures the data in different ways:

· Directly from AnyDAC application code

· Using the methods of the AnyDAC Phys layer: IADPhysCommand.Define / IADPhysCommand.Fetch

· Using the interface of the AnyDAC DApt layer

2.7 GUIx Layer
	Layer name
	GUIx

	Packages
	GUIx

GUIxForms

GUIxConsole

	Uses packages
	Stan

ComI
Comp

	Interface unit
	daADGUIxIntf

The GUIx layer provides a way to interact with the user from an AnyDAC application. Depending on the environment or the domain this can be specific for the application. Hence, GUIx layer interfaces are implemented by one of the alternative packages:

· GUIxForms. The package implements Delphi TForm based dialogs, which are interacting with end user through Windows GUI.

· GUIxConsole. The package is useful for Win32 Service or similar application. This package does not use any GUI API, but provides a silent application mode without desktop interaction.

The main interfaces of the GUIx layer are:

· IADGUIxLoginDialog. This Dialog asks the user for his login credential. It may be connected to the Phys layer via IADPhysConnection.LoginDialog or to the Comp layer via TADConnection.LoginDialog.

· IADGUIxErrorDialog. AnyDAC exception handling can be hooked to this Dialog. It shows errors messages with extended information for AnyDAC exceptions.

· IADGUIxAsyncExecuteDialog. This Dialog shows progress of asynchronous operation execution and also allows the user to cancel it.

· IADGUIxWaitCursor. This component is changing the mouse cursor into an hourglass cursor. It should be used at the beginning of long running operations.

· TADGUIxFormsQBldrDialog. SQL Queries can be built with this graphical tool.

2.8 Comp Layer
	Layer name
	Comp

	Packages
	Comp

	Uses packages
	Stan

ComI

DatS
Phys
DApt

	Interface unit
	-

The Comp layer represents the AnyDAC public interfaces as Delphi non-visual components, similar to other Delphi data access components.

3 Stan Layer

[image: image3.wmf]Interface factory

TADComObject,

TADSingletonFactory,

TADMultyInstanceFactory,

ADCreateInterface

Stan Layer

daADStanIntf

Resource pooling

IADStanObject,

IADStanObjectHost,

IADStanObjectFactory

Eror handling

IADStanErrorHandler,

EADException,

EADDBEngineException

Expression evaluation

IADStanExpressionDataSource,

IADStanExpressionParser,

IADStanExpressionEvaluator

Persistent definition list

IADStanDefinitionStorage,

IADStanDefinition,

IADStanDefinitions

Persistent connection

definition list

IADStanConnectionDef

IADStanConnectionDefs

Async operation

execution

IADStanAsyncOperation,

IADStanAsyncExecutor,

IADStanAsyncHandler

daADStanPool

daADStanError

daADStanExpr,

daADStanRegExpr

daADStanDef

daADStanConnDef

daADStanAsync

daADStanParam

AnyDAC parameter and

macro collections

TADParam, TADParams,

TADMacro, TADMacros

daADStanOption

AnyDAC options

IADStanOptions, TADFormatOptions,

 TADFetchOptions, TADUpdateOptions,

 TADResourceOptions, TADStanTxOptions

daADStanUtil, daADStanConst, daADStanResStrs

AnyDAC common constants,

utilities, data types

daADStanFactory

daADStanTracer

Tracer

TADTracer

Figure 3 Stan Layer Overview

The Stan layer is a set of common algorithms, routines, data types and constants. Algorithms are exposed as COM interfaces as well as Delphi classes and routines. Classes were used instead of interfaces to achieve compatibility with legacy component libraries. All layer COM interfaces are declared in the daADStanIntf unit.

3.1 Interface Factory

	Interface unit
	daADStanFactory

	Standard implementation unit
	daADStanFactory

Public AnyDAC class instances may be created directly. And, to create interface instances, AnyDAC uses factory-based approach.

Some AnyDAC interfaces may be instantiated directly (top-level), but some just through another interfaces. Object class implementing top-level interfaces, must be inherited from TADComObject base class, which itself is inherited from TComObject Delphi class. For example, definition class:

 TADDefinitions = class (TADComObject, IADStanDefinitions)

 ……..

 end;

Then interface-implementing class must be registered with one of standard AnyDAC factories. All factory classes are inherited from TComObjectFactory Delphi class. There are two factories:

· TADMultyInstanceFactory. This factory will create new implementing object instance each time, when user asks for interface instance. The object will count references to it interfaces. And after count will be equal to zero object instance will be destroyed.

· TADSingletonFactory. This factory will create single implementing object instance at first request for interface instance. All subsequent requests will share the same object instance. The object will be destroyed at AnyDAC application shutdown.

The units containing classes, implementing AnyDAC top-level interfaces, will have, for example, following factory registration code:

initialization

 TADMultyInstanceFactory.Create(TADFileDefinitionStorage, IADStanDefinitionStorage);

 TADMultyInstanceFactory.Create(TADDefinitionStandalone, IADStanDefinition);

 TADMultyInstanceFactory.Create(TADDefinitions, IADStanDefinitions);

 TADMultyInstanceFactory.Create(TADConnectionDefStandalone, IADStanConnectionDef);

 TADMultyInstanceFactory.Create(TADConnectionDefs, IADStanConnectionDefs);

end.

And to have top-level interface implementation in your application, you should include specific implementation unit into your application uses clause. Without that, you can get error, saying “Object factory for class <interface GUID> is missing”. In this case refer to the Appendix 3. Top level interfaces and GUID’s.To create top-level interface instance you should use ADCreateInterface function. For example, following code creates an instance of IADStanConnectionDefs and returns it:

function TADPhysManager.GetConnectionDefs: IADStanConnectionDefs;

begin

 if FConnectionDefs = nil then

 ADCreateInterface(IADStanConnectionDefs, FConnectionDefs);

 Result := FConnectionDefs;

end;

3.2 Resource pooling
	Interface unit
	daADStanIntf

	Standard implementation unit
	daADStanPool

AnyDAC uses resource pooling to share limited resource instances across clients. AnyDAC pool collects and uses statistic about resource usage. This allows creating additional resource instances, if there are too few. And backward, if there will be too many not used resource instances, AnyDAC will destroy extra instances. This is useful for connection pooling, but may be used for other tasks, including own application needs.

In AnyDAC resource-pooling behavior is defined by these interfaces:

 { --}

 { Resource pool interfaces }

 { --}

 IADStanObject = interface (IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2001}']

 procedure BeforeReuse;

 procedure AfterReuse;

 ……………

 end;

 IADStanObjectHost = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2002}']

 procedure CreateObject(out AObject: IADStanObject);

 ……………

 end;

 IADStanObjectFactory = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2003}']

 procedure Open(const AHost: IADStanObjectHost; const ADef: IADStanDefinition);

 procedure Close;

 procedure Acquire(out AObject: IADStanObject);

 procedure Release(const AObject: IADStanObject);

 end;

IADStanObject is an interface, which has to implement resource object. Pooler will call BeforeReuse method just before a resource instance will be returned to application. And AfterReuse right after the application has returned resource instance backward to pool. The pool implementation keeps single reference to each resource instance. So, object implementing IADStanObject, may automatically return itself to pool:

// The code is simplified for goal of this manual

function TADPhysConnection._Release: Integer;

var

 oPoolItem: IADStanObject;

begin

 Result := InterlockedDecrement(FRefCount);

 // If connection is from pool, then check for last reference

 // which is kept by pool itself. And if so, then return object

 // to pool.

 if (Result = 1) and (FPool <> nil) then begin

 Supports(Self, IADStanObject, oPoolItem);

 FPool.Release(oPoolItem);

 InterlockedDecrement(FRefCount);

 Pointer(oPoolItem) := nil;

 end

 else if Result = 0 then

 Destroy;

end;
IADStanObjectHost is an interface, which is responsible for creating resource instances. It self is not a resource pool, but a resource instance factory.

IADStanObjectFactory is an top-level interface, which provides the required methods for managing a resource pool. The method Open activates the resource pool, therefore it should be called first. Then, it is possible to check resource items out and in. The second parameter is a definition, where pool will look for parameters. See Appendix 4. Connection definition parameters for parameters list.

The Acquire method is called to check out the instance, for example:

procedure TADPhysConnectionHost.CreateConnection(out AConn: IADPhysConnection);

var

 oObj: IADStanObject;

begin

 if FConnectionDef.Pooled then begin

 FPool.Acquire(oObj);

 Supports(oObj, IADPhysConnection, AConn);

 end

 else

 InternalCreateConnection(AConn);

end;

Calling Release checks in the instance. In the example above, instance returns himself to the pool automatically. That means, an IADPhysConnection instance will return itself to pool automatically, so programmer should not call pooler Release method. Actually, in this case pooler is not accessible to programmer.

3.3 Error handling

	Interface unit
	daADStanIntf,
daADStanError,
daADStanConst,
daADStanResStrs

	Standard implementation unit
	daADStanError

A correct error handling is very valuable for stable and flexible database application. AnyDAC has its own error-handling infrastructure. It consists of:

· Exception base classes (daADStanError unit);

· Exception error codes (daADStanConst unit);

· Exception error messages (daADStanResStrs unit);

· Exception handling interface (daADStanIntf).

All AnyDAC exception classes are derived from the base class EADException:

 EADException = class(EDatabaseError)

 public

 constructor Create(AADCode: Integer; const AMessage: String); overload;

 procedure Duplicate(var AValue: EADException); virtual;

 property ADCode: Integer read FADCode;

 end;

Here, ADCode contains an AnyDAC specific error code. All error codes are represented by the er_AD_XXX constants in the unit daADStanConst.

All RDBMS initiated exceptions are of class EADDBEngineException, which is inherited from EADException. This class provides detailed information returned by database system. In general, RDBMS errors are a sequence of sub errors, or few pairs of reason-consequence items. However, we more often see that they only return a single error item. The sequence of errors is exposed as a list of TADDBError instances, each of them can describe one error item. The following declaration shows details:

 TADDBError = class (TObject)

 public

 constructor Create(ALevel, AErrorCode: Integer; const AMessage,

 AObjName: String; AKind: TADCommandExceptionKind; ACmdOffset: Integer); overload;

 property ErrorCode: Integer read FErrorCode write FErrorCode;

 property Kind: TADCommandExceptionKind read FKind write FKind;

 property Level: Integer read FLevel write FLevel;

 property Message: String read FMessage write FMessage;

 property ObjName: String read FObjName write FObjName;

 property CommandTextOffset: Integer read FCommandTextOffset write FCommandTextOffset;

 property RowIndex: Integer read FRowIndex write FRowIndex;

 end;

 EADDBEngineException = class(EADException)

 public

 constructor Create(AADCode: Integer; const AMessage: String); overload;

 destructor Destroy; override;

 procedure Dublicate(var AValue: EADException); override;

 procedure Append(AItem: TADDBError);

 procedure Prepend(AItem: TADDBError);

 property ErrorCount: Integer read GetErrorCount;

 property Errors[Index: Integer]: TADDBError read GetErrors; default;

 property Kind: TADCommandExceptionKind read GetKind;

 property MonitorAdapterIntf: IADMoniDebugAdapter read FMonitorAdapterIntf;

 end;

Here EADDBEngineError.Errors is a collection of error items. The property Kind is the RDBMS independent error code and ErrorCode is the RDBMS native error code. The property ObjName identifies erroneous object, that may be violated constraint name or name of object failed to create or so on. For SQL syntax errors, property CommandTextOffset will contain SQL command text offset. And the RowIndex property is an index in parameter array for batch command execution.

Not all database systems offer the same range of information about errors occurred. Therefore, some of the properties of EADDBEngineException or TADDBError may have no values assigned.

For example, following code shows handling of the primary key violation:

try

 MyQuery.ExecSQL;

except

 on E: E EADDBEngineException do

 If E.Kind = ekUKViolated then

 ShowMessage(‘Unique key ‘ + E.Errors[0].ObjName + ‘ is violated’);

end;

For objects to handle their own exceptions in consistent way, AnyDAC defines the IADStanErrorHandler interface. Many AnyDAC objects such as the connection or command classes implement this interface. The following declaration shows more details:

 IADStanErrorHandler = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2007}']

 procedure HandleException(const AInitiator: IADStanObject; var AException: Exception);

 end;

The method HandleException of implementing this interface object will be called for every AnyDAC exception raised by methods of this object. The parameter AException will receive exception object. Actually, not all object methods, but most valuable, was programmed to call this error handler. For example, method IADPhysCommand.Execute has that, but IADPhysCommand.GetParams has not this functionality. IDAPhysCommand has property ErrorHandler, which allows to set custom error handler.

3.4 Expression evaluation
	Interface unit
	daADStanIntf

	Standard implementation unit
	daADStanExpr
daADStanRegExpr

Many features in AnyDAC are implemented using expression parser and evaluator. Examples are filtering capabilities, checking constraints, aggregate functionality, etc. The expression evaluator is based on the Oracle expression syntax and additionally supports:

· MIDAS set of expression functions;

· ODBC set of escape functions;

· A very limited kind of natural expressions (experimental);

· RegExp regular expressions.

The following declaration shows details:

 IADStanExpressionDataSource = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2008}']

 // public

 property VarIndex[const AName: String]: Integer read GetVarIndex;

 property VarType[AIndex: Integer]: TADDataType read GetVarType;

 property VarData[AIndex: Integer]: Variant read GetVarData write SetVarData;

 property Position: Pointer read GetPosition write SetPosition;

 property RowNum: Integer read GetRowNum;

 end;

 IADStanExpressionParser = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2009}']

 // public

 function Prepare(const ADataSource: IADStanExpressionDS;

 const AExpression: String; AOptions: TADExpressionOptions;

 AParserOptions: TADParserOptions; const AFixedVarName: String): IADStanExpression;

 property DataSource: IADStanExpressionDS read GetDataSource;

 end;

 IADStanExpressionEvaluator = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2010}']

 function Evaluate: Variant;

 property DataSource: IADStanExpressionDS read GetDataSource;

 end;

The high-level interface - IADStanExpressionParser - allows parsing expressions. If the process completes successfully, it returns an instance of IADStanExpressionEvaluator. It represents the input parsed and optimized for expression evaluation.

Following example shows how to parse and evaluate expression:

var

 oParser: IADStanExpressionParser;

 oEval: IADStanExpressionEvaluator;

begin

 ADCreateInterface(IADStanExpressionParser, oParser);

 oEval := oParser.Prepare(nil, ‘to_char(10+20)’, [ekNoCase], [poDefaultExpr], '');

 oEval.Evaluate;

end;

The expression engine is independent of a data source and may be integrated with anyone. The interface IADStanExpressionDataSource represents an abstract data source. From the expression engine point of view, data source is a matrix. Each column in the matrix is a named variable, which has an index, data type and value (properties: VarIndex, VarType, VarData). One of rows in the matrix may be current and is represented by position (Position property). For example, Delphi’s TDataSet may be modeled that TFields are matrix columns and TDataSet rows are rows of the matrix.

For example, method TADDataSet.CreateExpression creates evaluator for custom expression and setups it to use field values from current row:

var

 oEval: IADStanExpressionEvaluator;

begin

 oEval := MyQuery1.CreateExpression(‘Amount * Price + Taxes’);

 while not MyQuery1.Eof do begin

 // move evaluator to current record

 oEval.DataSource.Position := MyQuery1.GetRow;

 // evaluate expression for current record

 oEval.Evaluate;

 MyQuery1.Next;

 end;

3.5 Persistent definition list

	Interface unit
	daADStanIntf

	Standard implementation unit
	daADStanDef

In AnyDAC, a definition is a named set of parameters. Each parameter is a name-value pair. The value type may be any one of following:

· String

· Integer

· Boolean (is encoded by True/False values)

· YesNo (similar to Boolean, but is encoded by Yes/No values)

A parent-child relation may relate any two definitions. In this case parameters of a child definition will override cognominal parameters of parent definition. For example:

	Parent definition parameters
	Child definition parameters
	Resulting parameters set

	P1=QWE
	-
	P1=QWE

	P2=123
	P2=456
	P2=456

	-
	P3=True
	P3=True

	P4=ASD
	P4=<empty>
	P4=<empty>

Definitions are collected together into a list, which may be stored to external storage. There may be definitions of the following styles:

· Internal. It is not a member of the definition list and cannot be stored in external storage. Most time is used as an unnamed temporary parameter set. To create internal definition use method IADStanDefinitions.AddInternal.

· Private. It is a member of definition list and may be founded in the list by name. But it cannot be stored in external storage. Most time is used as a named temporary parameter set. It is default style.

· Persistent. It is like a private, but is stored in external storage. By default, AnyDAC creates private definitions. To make it persistent, mark it so calling the method MarkPersistent.

Private and Persistent definition names have to be unique (case insensitive) in the list. The following declaration shows more details:

 IADStanDefinitionStorage = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2012}']

 // public

 function CreateIniFile: TCustomIniFile;

 // R/O

 function ActualFileName: String;

 // R/W

 property FileName: String read GetFileName write SetFileName;

 property GlobalFileName: String read GetGlobalFileName write SetGlobalFileName;

 property DefaultFileName: String read GetDefaultFileName write SetDefaultFileName;

 end;

 IADStanDefinition = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2013}']

 // public

 procedure Apply;

 procedure Clear;

 procedure Cancel;

 procedure Delete;

 procedure MarkPersistent;

 procedure OverrideBy(const ADefinition: IADStanDefinition; AAll: Boolean);

 function ParseString(AStr: String; AKeywords: TStrings; AFmt: TADParseFmtSettings): String; overload;

 function BuildString(AKeywords: TStrings; AFmt: TADParseFmtSettings): String; overload;

 function HasValue(const AName: String): Boolean; overload;

 function OwnValue(const AName: String): Boolean;

 property State: TADDefinitionState read GetState;

 property Style: TADDefinitionStyle read GetStyle;

 property AsString[const AName: String]: String read GetAsString write SetAsString;

 property AsBoolean[const AName: String]: LongBool read GetAsBoolean write SetAsBoolean;

 property AsYesNo[const AName: String]: LongBool read GetAsBoolean write SetAsYesNo;

 property AsInteger[const AName: String]: LongInt read GetAsInteger write SetAsInteger;

 property ParentDefinition: IADStanDefinition read GetParentDefinition write SetParentDefinition;

 // published

 property Params: TStrings read GetParams write SetParams;

 property Name: String read GetName write SetName;

 property MonitorBy: String read GetMonitorBy write SetMonitorBy;

 property OnChanging: TNotifyEvent read GetOnChanging write SetOnChanging;

 property OnChanged: TNotifyEvent read GetOnChanged write SetOnChanged;

 end;

 IADStanDefinitions = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2014}']

 function Add: IADStanDefinition;

 function AddInternal: IADStanDefinition;

 function FindDefinition(const AName: String): IADStanDefinition;

 function DefinitionByName(const AName: String): IADStanDefinition;

 procedure Cancel;

 procedure Save(AIfModified: Boolean = True);

 function Load: Boolean;

 procedure Clear;

 property Count: Integer read GetCount;

 property Items[AIndex: Integer]: IADStanDefinition read GetItems; default;

 property Loaded: Boolean read GetLoaded;

 // published

 property AutoLoad: Boolean read GetAutoLoad write SetAutoLoad;

 property Storage: IADStanDefinitionStorage read GetStorage;

 property BeforeLoad: TNotifyEvent read GetBeforeLoad write SetBeforeLoad;

 property AfterLoad: TNotifyEvent read GetAfterLoad write SetAfterLoad;

 end;

The top-level interface IADStanDefinitionStorage represents the external definition storage. There are two kinds of storage implemented, a file based storage and a registry based storage.

A registry-based storage will look for data in keys:

· If FileName is specified, at HKLM\[FileName]

· If FileName is empty, at HKLM\Software\da-soft\AnyDAC\[DefaultFileName]

A file-based storage will look for data in paths:

· If FileName is specified with directory, FileName is used;

· If FileName is specified without directory, <executable module directory>\FileName is used;

· else at <executable module directory>\DefaultFileName, if DefaultFileName specified and it exists;

· else at GlobalFileName.

The top-level interface IADStanDefinition represents a definition. Its property Name contains the definition name, which is required for persistent and private definitions. The ParentDefinition property points to the parent definition.

To start editing just modify definition data. Properties AsString, AsBoolean and AsInteger allow to get/set parameter values.

After editing, deleting or adding a persistent definition, updates are not stored to external storage automatically, but are cached in memory. Programmer should call the Apply method of the definition object to apply changes to a single object, or call the Apply method of the definition list to apply changes to all definitions. Before a definition is stored to external storage, updates may be canceled calling the Cancel method of definition or definition list, to cancel all updates in definition list.

Following code shows how to add new definition:

var

 oDefs: IADStanDefinitions;

…………

 ADCreateInterface(IADStanDefinitions, oDefs);

 oDefs.Storage.FileName := ‘Employees.ini’;

 with oDefs.Add do begin

 AsString[‘Name’] := ‘John’;

 AsInteger[‘Age’] := 30;

 AsBoolean[‘IsManager’] := True;

 MarkPersistent;

 Apply;

 end;

The top-level interface IADStanDefinitions represent a list of definitions. The properties Items and Count are used to traverse through the list.

If the switch AutoLoad is False, then method Load has to be called explicitly to load the definitions from the storage. Additionally it is still possible to add further definitions by calling method’s Add / AddInternal. But it is not possible first adding definitions on fly and then loading definitions from the storage. If the switch AutoLoad is True, then the first use of an definition (e.g. FindDefinition, Add, Count, etc) triggers the method Load. Loading definitions from storage more than once is not allowed (call of Load if property Loaded is True gives an exception). To clear and initialize list use method Clear.

BeforeLoad event is fired right before loading definitions. It may be used, for example, to set the definition file name. AfterLoad event is fired after loading definitions. It may be used, for example, to add additional definitions on fly.

3.6 Persistent connection definition list

	Interface unit
	daADStanIntf

	Standard implementation unit
	daADStanConnDef

A persistent connection definition list is a sub kind of persistent definition list. Connection definition list is used to store named sets of connection properties such as hostname, database name, username, etc. It is similar to the old BDE’s aliases or DSNs in ODBC. See the following declaration for details:

 IADStanConnectionDef = interface(IADStanDefinition)

 ['{3E9B315B-F456-4175-A864-B2573C4A2015}']

 // public

 procedure WriteOptions(AFormatOptions: TObject; AUpdateOptions: TObject;

 AFetchOptions: TObject; AResourceOptions: TObject);

 procedure ReadOptions(AFormatOptions: TObject; AUpdateOptions: TObject;

 AFetchOptions: TObject; AResourceOptions: TObject);

 property UserName: String read GetUserName write SetUserName;

 property Password: String read GetPassword write SetPassword;

 property NewPassword: String read GetNewPassword write SetNewPassword;

 property Database: String read GetDatabase write SetDatabase;

 property ExpandedDatabase: String read GetExpandedDatabase;

 property Pooled: Boolean read GetPooled write SetPooled;

 property DriverID: String read GetDriverID write SetDriverID;

 property MonitorBy: String read GetMonitorBy write SetMonitorBy;

 end;

 IADStanConnectionDefs = interface(IADStanDefinitions)

 ['{3E9B315B-F456-4175-A864-B2573C4A2016}']

 // public

 function AddConnectionDef: IADStanConnectionDef;

 function FindConnectionDef(const AName: String): IADStanConnectionDef;

 function ConnectionDefByName(const AName: String): IADStanConnectionDef;

 property Items[AIndex: Integer]: IADStanConnectionDef read GetConnDefs; default;

 end;

In addition to defined methods and properties in IADStanDefinition, the top-level interface IADStanConnectionDef defines common parameters for most kinds of connections. Also, IADStanConnectionDefs.DefaultFileName default value is ‘AnyDACConnectionDefs.ini’. The GlobalFileName property value is loaded from registry key HKCU\Software\da-soft\AnyDAC\ ConnectionDefFile, if it exists, otherwise from HKLM\….

The parameter DriverID is mandatory. Its value is an identifier for one of AnyDAC’s Phys layer drivers. If the property Pooled is set to True, the Phys layer manager will associate a connection pool with this connection definition. Definition cannot change as long as at least one instance of IADPhysConnection is associated with this definition.

If the NewPassword property is specified, the user password in the database system is set to the new one as soon as the connection to the RDBMS has been established. Please note, that not all AnyDAC Phys layer drivers support this feature.

As long as no connection of a specific connection definition is open it is possible to change / remove a connection definition. Otherwise it will be locked until will exist connections. Following code demonstrates the creation on fly of new private connection definition.

DEManager.ConnectionDefs.AutoLoad := False;

with DEManager.ConnectionDefs.AddConnectionDef do

begin
 Name:= 'MyDefNew';

 DriverID:= 'MSAcc';

 Database:= '$(DEHOME)\DB\Data\DEDemo.mdb';

 AsBoolean['ReadOnly'] := True;

end;

3.7 Async operation execution

	Interface unit
	daADStanIntf

	Standard implementation unit
	daADStanAsync

AnyDAC supports synchronous and asynchronous execution of operations with additional option. Following execution modes are support:

· Blocking mode: The operation will be performed in the calling thread. And it is blocked until the operation has finished. If it is the main application thread, the user interface is blocked too.

· Non-blocking mode: The operation will be performed in the background thread. A running thread is blocked until the operation has finished. But the user interface is not blocked and can still respond to keyboard and mouse events.

· Cancel dialog: The operation will be performed in the background thread. A running thread is blocked until the operation has finished. Although the user interface is blocked, a window with the execution time and a cancel button is shown. This allows the user to force an operation to terminate immediately.

· Asynchronous Mode: The operation will be performed in the background thread. A running thread is not blocked and continues to execute, not waiting for operation to be finished.

Following declaration shows details:

 IADStanAsyncHandler = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2025}']

 procedure HandleFinished(const AInitiator: IADStanObject; AState: TADStanAsyncState);

 end;

 IADStanAsyncOperation = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2022}']

 procedure Execute;

 procedure AbortJob;

 function AbortSupported: Boolean;

 end;

 IADStanAsyncExecutor = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2023}']

 // public

 procedure Setup(const AOperation: IADStanAsyncOperation;

 const AMode: TADStanAsyncMode; const ATimeout: LongWord;

 const AHandler: IADStanAsyncHandler);

 procedure Run;

 procedure AbortJob;

 // R/O

 property State: TADStanAsyncState read GetState;

 property Mode: TADStanAsyncMode read GetMode;

 property Timeout: LongWord read GetTimeout;

 property Operation: IADStanAsyncOperation read GetOperation;

 property Handler: IADStanAsyncHandler read GetHandler;

 end;

The IADStanAsyncOperation interface represents the operation to be performed. The method Execute performs action. If operation may be aborted, then AbortSupported method returns True. Calling AbortJob method will cancel operation, if it supported.

The top-level interface IADStanAsyncExecutor represents the asynchronous execution engine. The method Setup initializes engine and Run actually performs operation. After operation is finished and if Handler is assigned, the method Handler.HandleFinished will be called. Also, if Timeout is not $FFFFFFFF and mode is Blocking, then operation will be performed in background thread.

The IADPhysCommand interface implementation uses Options.ResourceOptions.AsyncXXXX properties to perform Execute / Open / Fetch operations in one of execution modes. If execution mode is Cancel dialog, then you can use TADGUIxFormsAsyncExecuteDialog component. It links standard dialog to application.
3.8 Parameters and macros
	Interface unit
	daADStanParam

	Standard implementation unit
	daADStanParam

The AnyDAC command parameters definition is a superset of standard Delphi TParam and TParams classes. Parameters do not have COM interfaces and are represented as the classes TADParam and TADParams. The main difference to the old Delphi parameters is the support for an array of values for batch operations, Oracle PL/SQL tables and Unicode strings.

Macros are a unique feature of AnyDAC. They are similar to parameters – both are named variables in the body of a RDBMS command, but parameter values are transmitted to RDBMS and AnyDAC expands macros into RDBMS command text. So, RDBMS does not see macros. Hence, macros can be used where parameters cannot, for example to parameterize table names in SQL FROM clauses. The classes TADMacro and TADMacros represent a macro and a list of macros.

3.9 Options
	Interface unit
	daADStanOption

	Standard implementation unit
	daADStanOption

A large set of options makes AnyDAC a flexible database framework. Options are organized in five groups:

· TADFetchOptions - Fetch options control, how the Phys layer command will fetch data from the RDBMS. For example, it is possible to fetch all records at once, or fetch records on demand.

· TADFormatOptions - Format options control, how RDBMS data types will be mapped to the data types available on the client and vice-versa. For example, a programmer may setup a mapping for Oracle NUMBER (38) onto dtBCD or onto dtInt64.

· TADUpdateOptions - Update options control, how AnyDAC will post updates to RDBMS. For example, during an update AnyDAC can update all fields in a table or only the changed ones.

· TADResourceOptions - Resource options control, how system resources are used. For example, a AnyDAC Phys layer command can be performed asynchronously or blocked.

· TADTxOptions - Transaction options control, how transactions are performed. For example, perform them in ReadCommitted mode.

Although AnyDAC introduces a lot of options, setting up each command makes programming complex and error prone. AnyDAC solves this issue by introducing the parent-child option values inheritance model. Option values are propagated from parent to child (top-down). If a lower level has no option value assigned explicitly, the value will be taken from the higher level. At each level, options are represented by the IADStanOptions interface, which collects the first four options groups in the single entity. The following declaration shows the details:

 IADStanOptions = interface (IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2018}']

 // public

 property FetchOptions: TADFetchOptions read GetFetchOptions;

 property FormatOptions: TADFormatOptions read GetFormatOptions;

 property UpdateOptions: TADUpdateOptions read GetUpdateOptions;

 property ResourceOptions: TADResourceOptions read GetResourceOptions;

 property ParentOptions: IADStanOptions read GetParentOptions;

 end;

Here, ParentOptions property points to the higher level (if it exists), or it is set to NIL.

The AnyDAC Phys layer has Manager, Connection and Command entities. From the options’ point of view, they are levels. A Manager is at the top level, a Connection is at the intermediate and a Command is at the bottom level. So, by setting any particular Manager option, all Commands will inherit its value. This is true as long as the programmer has not explicitly assigned a value to the Command option. Examples:

· The mapping of data types from the RDBMS types to the client types defined in FormatOptions is inherited by all Commands from their Connection.

 with oConnection.Options.FormatOptions do begin

 OwnMapRules := True;

 MapRules.Clear;

 with MapRules.Add do begin

 PrecMax := 19;

 PrecMin := 4;

 SourceDataType := dtFmtBCD;

 TargetDataType := dtCurrency;

 end;

 end;

· A Data Warehouse application may setup high-speed fetching mode, using FetchOptions of the Manager level. So, all connection and all their commands will inherit these options.

 with ADPhysManager.Options.FetchOptions do begin

 Items := [];

 Cache := [];

 RowsetSize := 200;

 end;

· The OLTP application may set optimistic locking mode in UpdateOptions for specific data adapters.

3.10 Debug monitoring

[image: image4.wmf]Monitoring interfaces

IADMoniClient

IADMoniRemoteClient

IADMoniFlatFileClient

IADMoniAdapter,

TADMoniClientLinkBase

ADCreateMoniClient

Stan Layer

Moni FlatFile Package

daADMoniFlatFile,

daADStanTracer

Moni Indy Package

daADMoniIndyBase,

daADMoniIndyClient,

daADMoniIndyServer

daADStanIntf,

daADMoniBase

Figure 4 Moni Packages Overview

	Interface unit
	daADStanIntf

	Standard implementation unit
	daADMoniIndyClient,
daADMoniFlatFile

AnyDAC defines and implements debug monitor client interface, which allow monitoring the interaction of AnyDAC application and DBMS. The monitor client is build into the application. It packs the trace of application execution into the messages and sends them to the server part. This requires some sort of a message transport implementation. Today AnyDAC has 2 implementations:

· Flat File. The implementation is inside of MoniFlatFile package. The monitor client output the trace of application execution into the flat ANSI text file. So, the file may be inspected by Windows Notepad application (server part <g>).

· Remote monitoring. The implementation is inside of MoniIndy package. The monitor client sends binary formatted messages to the server part using Indy TCP/IP components. The server part is the AnyDAC Monitor application, located in $(AnyDAC)\Tool\Monitor directory.

The remote monitoring (additionally to flat file one) allowing inspecting the current state of Phys, DApt and Comp layer objects inside of AnyDAC application. Also AnyDAC Monitor is able to monitor few applications running as on the same machine, as on any other machine which has TCP/IP link with machine running Monitor. Following picture illustrates this:

[image: image5.wmf]PC 1 with AnyDAC

application running

PC with AnyDAC Monitor

running

PC N with AnyDAC

application running

Internet

Figure 5 Remote Monitoring network

Generic monitor client is represented by IADMoniClient interface. Following shows it details:

 IADMoniClient = interface (IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2005}']

 procedure SetupFromDefinition(const AParams: IADStanDefinition);

 procedure ResetFailure;

 procedure Notify(AKind: TADDebugEventKind; AStep: TADDebugEventStep;

 ASender: TObject; const AMsg: String; AArgs: array of const);

 function RegisterAdapter(const AAdapter: IADMoniAdapter): LongWord;

 procedure UnregisterAdapter(const AAdapter: IADMoniAdapter);

 procedure AdapterChanged(const AAdapter: IADMoniAdapter);

 property Tracing: Boolean read GetTracing write SetTracing;

 property Name: TComponentName read GetName write SetName;

 property EventKinds: TADDebugEventKinds read GetEventKinds write SetEventKinds;

 end;

Property Name allows setting a client name, which will appear as client identifier on server. Property Tracing enables or disables client output. Method Notify outputs tracing message. Method RegisterAdapter registers adapter with client and returns adapter handle. UnregisterAdapter method finishes registration. Method AdapterChanged notifies monitor client about change of adapter state. The client will send adapter state to the server and server will display updated information.

Then, each monitor client kind has own top-level COM interface. Following shows it details:

 IADMoniRemoteClient = interface (IADMoniClient)

 ['{3E9B315B-F456-4175-A864-B2573C4A2026}']

 property Host: String read GetHost write SetHost;

 property Port: Integer read GetPort write SetPort;

 property Timeout: Integer read GetTimeout write SetTimeout;

 end;

 IADMoniFlatFileClient = interface (IADMoniClient)

 ['{3E9B315B-F456-4175-A864-B2573C4A2027}']

 property FileName: String read GetFileName write SetFileName;

 property FileAppend: Boolean read GetFileAppend write SetFileAppend;

 end;

AnyDAC may create only one instance of each monitor client kind. So, all RDBMS connections in the same application will share monitoring clients. By default, monitoring clients are not linked into AnyDAC application. Drop one of (or both) following components to one of your forms or data modules to link monitor client implementation to application:

· TADMoniIndyClientLink – for remote monitoring.

· TADMoniFlatFileClientLink – for flat file monitoring.

Few link components of the same class will share the same monitor client. Following example sends messages to the trace:

var

 oConnDef: IADStanDefinition;

 oRemMoni: IADMoniRemoteClient;

 oMoni: IADMoniClient;

 i: Integer;

 iFactorial: Integer;

……

 ADCreateInterface(IADMoniRemoteClient, oRemMoni);

 oMoni := oRemMoni as IADMoniClient;

 i := 1;

 iFactorial := 1;

 oMoni.Notify(ekVendor, esStart, nil, ‘Starting, [‘i’, i, ‘iFactorial’, iFactorial]);

 while i < N do begin

 Inc(i);

 iFactorial := iFactorial * i;

 oMoni.Notify(ekVendor, esProgress, nil, ‘Calculating’, [‘i’, i, ‘iFactorial’, iFactorial]);

 end;

 oMoni.Notify(ekVendor, esEnd, nil, ‘Finishing’, [‘i’, i, ‘iFactorial’, iFactorial]);

The remote monitoring uses monitor adapters to inspect object state. For that object must implement monitor adapter interface and register itself with monitor client. Adapter interface publishes properties and represents an item of AnyDAC application hierarchical structure, identifying itself by unique path in this hierarchy. AnyDAC Monitor reconstructs and displays AnyDAC application structure and its item properties. Following picture illustrates this:

[image: image6.jpg]
Monitor adapter is represented by IADMoniAdapter interface. Following shows details:

 IADMoniAdapter = interface (IInterface)

 procedure GetItem(AIndex: Integer; var AName: String; var AValue: Variant;

 var AKind: TADDebugMonitorAdapterItemKind);

 property Handle: LongWord read GetHandle;

 property ItemCount: Integer read GetItemCount;

 end;

Property Handle must return handle received from RegisterAdapter call. ItemCount property returns a number of properties published by adapter. And method GetItem actually returns property information. The adapted object also must implement IADStanObject interface. The client determines adapter place in the application hierarchy using it Name and Parent properties. It is adapter responsibility to notify monitor client about its state change, so client will send updated info to the server. For that adapter should call method IADMoniClient.AdapterChanged. For example:

procedure TADPhysCommand.Prepare(const ACommandText: String = '');

begin

 ……………

 if FConnection.Tracing then

 FConnection.Monitor.AdapterChanged(Self);

end;

4 DatS Layer

[image: image7.wmf]DatS Layer

gsADDatSManager

AnyDAC Data Storage

TADDatSManager,

TADDatSTable, TADDatSColumn,

TADDatSRow, TADDatSView

Stan Layer

Figure 6 DatS Layer Overview

DatS layer consists of single package called DatS. All interfaces of this layer are exposed as Delphi classes. The COM is not used here (with small exceptions), due to complexity and performance. The DatS layer makes use of the resources from the Stan layer:

· Expression evaluation engine (IADStanExpressionDS, IADStanExpressionParser, IADStanExpression interfaces)

· Standard routines, functions, constants, types.

DatS layer is actually In-Memory Data Storage with relational database engine limited capabilities. DatS is independent on any specific RDBMS and database structure. Moreover it may be used in the same time with many data sources. Following diagram shows simplified object model of DatS layer:

[image: image8.wmf]TADDatSManager

TADDatSTable

TADDatSUniqueContraint,

TADDatSForeignKeyConstraint,

TADDatSCheckConstraint,

etc

TADDatSColumn

TADDatSRow

TADDatSView

TADDatSMechSort,

TADDatSMechRowState,

TADDatSMechRange,

TADDatSMechFilter,

TADDatSMechError,

etc

TADDatSRelation

Figure 7 DatS Class Diagram

AnyDAC DatS layer by architecture is similar to the ADO.NET ®. Most information sources about Ado.Net may be successfully used for DatS layer. The table below lists the point in which the two products differ.

	Feature
	Ado.Net
	DatS layer

	Destruction of objects.
	Implicit. It is responsibility of garbage collector.
	Explicit. Programmer is responsible for destruction of “root” objects (like a manager, table).

“Root” object will destroy “sub” objects (like tables in manager, columns in table, etc) automatically.

	Class names.
	DataXXXX
	TADDatSXXXX. DatS follows AnyDAC naming conventions.

	
	DataSet
	TADDatSManager

	Data types.
	Not limited to strict set.
	Defined by TADDataType enumeration type. This is because of differences between Delphi RTL and .NET CLR.

	Collections.
	Support of ICollection and .Net foreach keyword.
	DatS supports:

property ItemI[AIndex: Integer]: <object>;
property ItemS[AIndex: String]: <object>;
property Count: Integer;

	Internals.
	Own implementation.
	Own implementation.

4.1 DatS Manager

The root object of DatS is a TADDatSManager. DatS manager is a set of tables and relationships between tables. Tables itself contain a data. Relationships allow navigating through these data, using hierarchical relations. The programmer is responsible for defining relationships between tables. The table structure may be defined by the programmer or by the Phys layer command.

4.2 DatS Table

The TADDatSTable class is the central object in the DatS layer. A data table itself is a collection of columns, rows, constraints and views. To create new table, just create it using it constructor.

4.2.1 DatS Column

A column collection defines the structure of table rows. Columns represent meta information and do not store data itself. Data is stored in rows only. To create rows, the programmer should add at least one column to the columns collection of a table. The class TADDatSColumn represents a column. The following declaration shows its details:

 TADDatSColumn = class (TADDatSBindedObject)

 public

 // rw

 property AllowDBNull: Boolean read GetAllowDBNull write SetAllowDBNull

 default True;

 property Attributes: TADDataAttributes read FAttributes write

 SetAttributes default [caAllowNull];

 property AutoIncrement: Boolean read FAutoIncrement write SetAutoIncrement

 default False;

 property AutoIncrementSeed: Integer read FAutoIncrementSeed write

 SetAutoIncrementSeed default 1;

 property AutoIncrementStep: Integer read FAutoIncrementStep write

 SetAutoIncrementStep default 1;

 property Caption: String read GetCaption write SetCaption;

 property DataType: TADDataType read FDataType write SetDataType

 default dtUnknown;

 property Expression: String read FExpression write SetExpression;

 property Options: TADDataOptions read FOptions write SetOptions

 default [coAllowNull, coInUpdate, coInWhere];

 property Precision: Integer read FPrecision write SetPrecision default 0;

 property ReadOnly: Boolean read GetReadOnly write SetReadOnly default False;

 property Scale: Integer read FScale write SetScale default 0;

 property Size: LongWord read FSize write SetSize default 50;

 property SourceDataType: TADDataType read FSourceDataType write FSourceDataType;

 property SourcePrecision: Integer read FSourcePrecision write FSourcePrecision;

 property SourceScale: Integer read FSourceScale write FSourceScale;

 property SourceSize: LongWord read FSourceSize write FSourceSize;

 property SourceDataTypeName: String read FSourceDataTypeName

 write FSourceDataTypeName;

 property Unique: Boolean read GetUnique write SetUnique default False;

 end;

Main properties of TADDatSColumn are:

· Name – name of column (inherited from base class).

· DataType – type of column data. For details, see Appendix 1. TADDataType. AnyDAC does not allow extending the set of data types like Ado.Net (with some exception).

· Size – maximum size of string data types, as ANSI strings, UNICODE strings and byte strings. Size is specified in data type units, not in bytes.

· Precision and Scale – precision and scale of real numeric data types such as double, currency, BCD and FmtBCD.

If DatS table has rows and programmer will change DataType or Size properties, exception will be raised. Property Attribute contains a set of column objective characteristics. And property Options contains a set of characteristics assigned to column by user. For example, caAllowNull excluded from Attribute of binded column means, column in DB table requires value to be specified. By default, including / excluding caAllowNull in / from Attribute, will include / exclude coAllowNull in / from Options. But, only coAllowNull controls column value optionality. The similar is about caReadOnly and coReadOnly.

The programmer may use the properties AutoIncrement, AutoIncrementSeed, AutoIncrementStep to control automatic column data generation. If AutoIncrement is set to True, the data table generates new unique column value when a new row is added to the table. For example, following code will add column incrementing with –1 step, starting from 10:

var

 oTab: TADDatSTable;

……

 with oTab.Columns.Add(‘ID’, dtInt32) do begin

 AutoIncrement := True;

 AutoIncrementSeed := 10;

 AutoIncrementStep := -1;

 end;

The property Expression defines expressions to calculate column value, based on the values of other columns in the same row. If the caCalculated attribute is included into Attributes, column value is calculated only by Expression and the programmer cannot change its value. If the caCalculated attribute not included, Expression value is only the default value of the column. So, the value will be assigned each time a new row is created and the programmer may change the column value. Following example will create calculated column:

var

 oTab: TADDatSTable;

……

 with oTab.Columns.Add(‘Total’, dtCurrency) do

 Expression := ‘ItemPrice * ItemAmount’;

The set of properties SourceXXXX maps column to data source column from which data will be fetched into table. The property SourceID is inherited from TADDatSBindedObject. It binds column to data source field with the specified ID (sequentional number). Worth to mention, that setting Expression for bind column (SourceID > 0) will automatically make that default value expression, otherwise calculated column.

4.2.2 DatS Row

The data row collection stores table data. Each data row has a layout as defined by the table column collection. Rows may be added either programmatically or using Phys layer objects (fetched from data source). TADDatSRow class represents data rows. The following declaration shows details:

 TADDatSRow = class (TADDatSObject)

 public

 procedure AcceptChanges;

 procedure AssignDefaults;

 procedure BeginEdit;

 procedure CancelEdit;

 procedure Clear(ASetColsToDefaults: Boolean);

 procedure ClearErrors;

 procedure Delete(ANotDestroy: Boolean = False);

 procedure EndEdit;

 function GetChildRows(const AChildRelationName: String): TADDatSView; overload;

 function GetChildRows(AChildTable: TADDatSTable): TADDatSView; overload;

 function GetChildRows(AChildRelation: TADDatSRelation): TADDatSView; overload;

 function GetParentRows(const AParentRelationName: String): TADDatSView; overload;

 function GetParentRows(AParentTable: TADDatSTable): TADDatSView; overload;

 function GetParentRows(AParentRelation: TADDatSRelation): TADDatSView; overload;

 function GetData(const AColumnName: String;

 AVersion: TADDatSRowVersion = rvDefault): Variant; overload;

 function GetData(AColumn: Integer;

 AVersion: TADDatSRowVersion = rvDefault): Variant; overload;

 function GetData(AColumn: TADDatSColumn;

 AVersion: TADDatSRowVersion = rvDefault): Variant; overload;

 function GetData(AColumn: Integer; AVersion: TADDatSRowVersion; var

 ABuff: Pointer; ABuffLen: LongWord; var ADataLen: LongWord; AByVal:

 Boolean): Boolean; overload;

 function HasVersion(AVersion: TADDatSRowVersion): Boolean;

 procedure RejectChanges;

 procedure SetData(AColumn: Integer; const AValue: Variant); overload;

 procedure SetData(AColumn: TADDatSColumn; const AValue: Variant); overload;

 procedure SetData(AColumn: Integer; ABuff: Pointer; ADataLen: LongWord); overload;

 procedure SetValues(const AValues: array of Variant);

 property ParentRow: TADDatSRow read GetParentRow write SetParentRow;

 property NestedRow[AColumn: Integer]: TADDatSRow read GetNestedRow write SetNestedRow;

 property NestedRows[AColumn: Integer]: TADDatSNestedRowList read GetNestedRows;

 property Fetched[AColumn: Integer]: Boolean read GetFetched write SetFetched;

 property HasErrors: Boolean read GetHasErrors;

 property RowError: EADException read GetRowError write SetRowErrorPrc;

 property RowState: TADDatSRowState read FRowState;

 property RowPriorState: TADDatSRowState read FRowPriorState;

 property ValueI[AColumn: Integer; AVersion: TADDatSRowVersion]: Variant read GetDataI;

 property ValueO[AColumn: TADDatSColumn; AVersion: TADDatSRowVersion]: Variant read GetDataO; default;

 end;

The property RowState indicates current row state. The row has the following live cycle:

[image: image9.wmf]rsDetached

rsInserted

rsDeleted

rsModified

rsUnchanged

rsEditing

add to row collection

Row

destroyed

AcceptChanges

Delete

AcceptChanges

Delete

Delete

BeginEdit

EndEdit

Delete

RejectChanges

RejectChanges

Add new

row

Fetch row

from data

source

Row object does

not exists any

more

CancelEdit

Figure 8 Life Cycle of DatS Row

AnyDAC distinct two main kind of rows, those fetched from data source (rsUnchanged) and those added programmatically (rsDetached / rsInserted).

The method TADDatSTable.NewRow creates new row and marks it as rsDetached. The row is associated with the table, but is not added to the table row list. Method TADDatSTable.Rows.Add will add row to the table row list and will mark row as rsInserted. This row may be posted to database. Following code will create new row at set it column values:

oRow := oTab.NewRow;

// at moment row is detached

oRow.SetData(0, 1000);

oRow.SetData(1, ‘Delphi’);

oRow.SetData(2, Today());

oTab.Rows.Add(oRow);

// at moment row is inserted

BeginEdit places row into rsEditing state, allowing modifications to row. BeginEdit cannot be called for detached or marked for deletion row. EndEdit call places fetched rows into rsModified state. CancelEdit call undoes all changes made science last BeginEdit call. Before data can be edited, fetched column values will be stored as row original version. Therefore, two versions will be accessible:

· Original – as it was fetched.

· Current – as it is after editing.

Method Delete will mark row as rsDeleted if it was fetched and, optionally, was modified. If the row was just inserted into the row list, then row will be deleted from the list and destroyed.

The method AcceptChanges transfers a row to the rsUnchanged state. After that, the row is in the same state as a row just fetched. The method RejectChanges undoes all changes made to row after it was fetched, or since the method AcceptChanges was called.

The overloaded methods GetData read a column value. The overloaded methods SetData modify a column value. Column value modification is possible, if the column’s ReadOnly property value is False and row is in state “detached” or “editing”.

When the Phys layer posts back row changes to the data source, the RDBMS engine may raise an error, for example a data integrity violation error. AnyDAC will store this error in the row. The property RowError refers to it.

4.2.3 DatS constraint
A constraint is a data integrity rule used in data tables. Each constraint acts on single row at every moment. It is defined on a set of columns belonging to a data table. If a constraint rule is violated, the DatS layer will raise an exception. The following declaration shows details of a constraint base class:

 TADDatSConstraintBase = class (TADDatSNamedObject)

 public

 procedure Check(ARow: TADDatSRow; AProposedState: TADDatSRowState;

 ATime: TADDatSCheckTime);

 procedure CheckAll; virtual;

 property ActualEnforce: Boolean read GetActualEnforce;

 property ConstraintList: TADDatSConstraintList read GetConstraintList;

 property Enforce: Boolean read FEnforce write SetEnforce default True;

 property Rely: Boolean read FRely write FRely default True;

 property CheckTime: TADDatSCheckTime read FCheckTime write FCheckTime default ctAtEditEnd;

 property Message: String read FMessage write FMessage;

 end;

The property CheckTime defines when a constraint will be checked:

· ctAtEditEnd - at the end of an edit operation (EndEdit / Delete / Add a row to rows collection).

· ctAtColumnChange – each time when any of columns validated by constraint is modified.

Only if the property Enforce is True, constraint will be checked. When the programmer activates constraint checking and Rely is False, then all table rows will be checked. If any row violates the constraint, then Enforce will be turned back to False. If Rely is True, then constraint will be enforced without checking all data table rows.

The property Message defines the message of the constraint violation exception.

AnyDAC implements three kinds of constraints. Each of them is implemented as a subclass of TADDatSConstraintBase:

· TADDatSUniqueContraint – unique / primary key constraint.

· TADDatSForeignKeyConstraint – foreign key constraint. It supports cascading operations.

· TADDatSCheckConstraint – check constraint.

Also TDatSTable.Constraints has few methods to fast add constraints. For example, to add Primary Key constraint, you can code:

var

 oPK: TADDatSUniqueContraint;

 oCustTab: TDatSTable;

……

 oPK := TADDatSUniqueContraint.Create;

 with oPK do begin

 Name := ‘CustomersPK’;

 ColumnNames := ‘CustNo’;

 IsPrimaryKey := True;

 end;

 oCustTab.Constraints.Add(oPK);

4.2.4 DatS View

Data view represents a subset of table rows. A view does not change a row layout, nor does it add new columns or hide others. A view strictly operates on rows of a single source object. It may be either table, either another view of the same table. A view may have aggregate values, which will be calculated from visible rows in a view. The following declaration shows details:

 TADDatSView = class (TADDatSNamedObject)

 constructor Create; overload; override;

 constructor Create(ATable: TADDatSTable; const AFilter: String = '';

 const ASort: String = ''; AStates: TADDatSRowStates = []); overload;

 constructor Create(ATable: TADDatSTable; const ABaseName: String;

 ACreator: TADDatSViewCreator; ACountRef: Boolean = True); overload;

 procedure Clear;

 procedure Rebuild;

 function Find(const AValues: array of Variant; AOptions: TADLocateOptions = []): Integer; overload;

 function Find(ARow: TADDatSRow; AOptions: TADLocateOptions = [];

 ARowVersion: TADDatSRowVersion = rvDefault): Integer; overload;

 function Search(AKeyRow: TADDatSRow; AKeyColumnList,

 AKeyColumnList2: TADDatSColumnSublist; AKeyColumnCount: Integer;

 AOptions: TADLocateOptions; var AIndex: Integer; var AFound: Boolean;

 ARowVersion: TADDatSRowVersion = rvDefault): Integer;

 function IndexOf(AKeyRow: TADDatSRow; ARowVersion: TADDatSRowVersion = rvDefault): Integer; overload;

 function Locate(var ARowIndex: Integer; AGoForward: Boolean = True;

 ARestart: Boolean = False): Boolean;

 function GetGroupState(ARecordIndex, AGroupingLevel: Integer): TADDatSGroupPositions;

 procedure DeleteAll;

 // ro

 property ActualActive: Boolean read GetActualActive;

 property Actual: Boolean read GetActual;

 property SortingMechanism: IADDatSMechSort read FSortingMechanism;

 property GroupingLevel: Integer read GetGroupingLevel;

 property Mechanisms: TADDatSViewMechList read FMechanisms;

 property Rows: TADDatSRowListBase read FRows;

 property Aggregates: TADDatSAggregateList read FAggregates;

 // rw

 property Active: Boolean read FActive write SetActive;

 property SourceView: TADDatSView read FSourceView write SetSourceView;

 property RowFilter: String read GetRowFilter write SetRowFilter;

 property RowStateFilter: TADDatSRowStates read GetRowStateFilter

 write SetRowStateFilter default [];

 property Sort: String read GetSort write SetSort;

 end;

After a view is created, all source object rows are visible. The property SourceView allows setting another view as a source object. If it is nil, then table is a source object. So, in general, few views may be linked into the line. Views will be updated, starting from one having the table as a source object. For example:

var

 OTab: TADDatSTable;

 oView1, oView2, oView3: TADDatSView;

………………

 // create views

 oView1 := TADDatSView.Create;

 oTab.Views.Add(oView1);

 oView2 := TADDatSView.Create;

 oTab.Views.Add(oView2);

 oView3 := TADDatSView.Create;

 oTab.Views.Add(oView3);

 // link views

 oView2.SourceView := oView1;

 oView3.SourceView := oView2;

 // activate views

 oView1.Active := True;

 oView2.Active := True;

 oView3.Active := True;

There oView1 has oTab table as source object. For oView2 source object is oView1 and for oView3 source object is oView2. So, first will be updated oView1, then oView2, then oView3.

When the programmer edits rows, the set of visible rows will be automatically updated. They will be accessible through the Rows property. Setting property Active to False, view will be not automatically updated and Rows will remain unchanged (snapshot). If a visible rows set is still actual, then property Actual returns True.

4.2.4.1 Mechanism

To filter and sort rows, the programmer should create mechanisms and add them to the view’s mechanism collection (property Mechanisms). The DatS layer implements few kind of data mechanisms. Each of these mechanisms differs in the rows filtering and sorting abilities. The following declaration shows the details of a mechanisms base class:

 TADDatSMechBase = class (TADDatSObject)

 public

 function GetRowsRange(var ARowList: TADDatSRowListBase; var ABeginInd,

 AEndInd: Integer): Boolean; virtual;

 function AcceptRow(ARow: TADDatSRow; AVersion: TADDatSRowVersion):

 Boolean; virtual;

 // rw

 property Active: Boolean read FActive write SetActive default False;

 property Locator: Boolean read FLocator write FLocator default False;

 end;

The property Active activates a mechanism, so it will participate in filtering and sorting rows. The property Locator works together with the Locate method of the view. If it is True, the mechanism does not filter rows, but will be used by the Locate method to find rows meeting the filtering conditions.

The DatS layer defines the following mechanisms:

· TADDatSMechSort – sorts rows.

· TADDatSMechRowState – filters rows based on row state.

· TADDatSMechRange – filters rows, sorted before by sorting mechanism. Filtering is based on range values (top, bottom) of sorted columns.

· TADDatSMechFilter – filters rows using boolean expression

· TADDatSMechError – filters rows with errors

· TADDatSMechDetails – filters rows using data relations. For a master, detail rows are filtered.

· TADDatSMechMaster – filters rows using data relations. For detail row, master row is filtered.

For example, following code shows, how to create view listing customers from state ‘AZ’ and sorting them by name:

var

 oView: TADDatSView;

 oFlt: TADDatSMechFilter;

 oSort: TADDatSMechSort;

…………

 // create view

 oView := TADDatSView.Create;

 oView.Active := True;

 // create filtering mechanism

 oFlt := TADDatSMechFilter.Create;

 oFlt.Expression := ‘State = ‘’AZ’’’;

 oFlt.Active := True;

 oView.Mechanisms.Add(oFlt);

 // create sorting mechanism

 oSort := TADDatSMechSort.Create;

 oSort.Columns := ‘Name’;

 oSort.Active := True;

 oView.Mechanisms.Add(oSort);

 // adding view to view list, right there will be builded

 // visible row list

 oCustTab.Views.Add(oView);

A view has short cut properties, which allow adding mechanisms to a view quickly:

· RowFilter – creates, defines and adds TADDatSMechFilter with specified expression. If TADDatSMechFilter instance already exists across mechanisms, then setting this property will modify existing one.

· RowStateFilter – creates, defines and adds TADDatSMechRowState with specified row states. If TADDatSMechRowState instance already exists across mechanisms, then setting this property will modify existing one.

· Sort – creates, defines and adds TADDatSMechSort with specified list of columns to sort. If TADDatSMechSort instance already exists across mechanisms, then setting this property will modify existing one.

Previous example may be rewritten in short form:

var

 oView: TADDatSView;

…………

 // create view

 oView := TADDatSView.Create;

 oView.RowFilter := ‘State = ‘’AZ’’’;

 oView.Sort := ‘Name’;

 oView.Active := True;

 oCustTab.Views.Add(oView);

or even:

 oView := TADDatSView.Create(oCustTab, ‘State = ‘’AZ’’’, ‘Name’);

But there exist much more other short cut methods.

After adding mechanism to the view Mechanisms list and setting property Active to True, mechanism will be activated and participate in view. Similar, after adding view to the table Views list and setting property Active to True, view will be activated and rows are filtered and sorted.

4.2.4.2 Aggregate

To define aggregates, the programmer must use the Aggregates collection property. The aggregate describes a calculation that summarizes the data in a group or in all of the data view rows. The following declaration shows the details:

 TADDatSAggregate = class (TADDatSNamedObject)

 public

 procedure Recalc;

 procedure Update;

 // ro

 property ActualActive: Boolean read GetActualActive;

 property State: TADDatSAggregateStates read FState;

 property Value[ARowIndex: Integer]: Variant read GetValue;

 // rw

 property Expression: String read FExpression write SetExpression;

 property GroupingLevel: Integer read FGroupingLevel write SetGroupingLevel default 0;

 property Active: Boolean read FActive write SetActive default False;

 end;

The property Expression defines a calculation expression.
5 Phys Layer

[image: image10.wmf]Phys Layer interfaces

IADPhysManagerMetadata

IADPhysManager

IADPhysDriverMetadata

IADPhysDriver

IADPhysConnectionMetadata

IADPhysConnection

IADPhysCommandGenerator

IADPhysCommand

IADPhysMetaInfoCommand

Phys Layer

Oracl Package

daADPhysOracl

daADPhysOraclCli

daADPhysOraclMeta

daADPhysOraclWrapper

MySQL Package

daADPhysMySQL

daADPhysMySQLCli

daADPhysMySQLMeta

daADPhysMySQLWrapper

DbExp Package

daADPhysDbExp

daADPhysDbExpMeta

daADPhysDbExpReg

ODBC Package

daADPhysODBCBase

daADPhysODBCCli

daADPhysODBCMeta

daADPhysODBCWrapper

MsSQL, MSAcc,

DB2, ASA Packages

few units depending on

ODBC Package

Phys Package

daADPhysCmdGenerator

daADPhysCmdPreprocessor

daADPhysConnMeta

daADPhysIntf

daADPhysManager

Stan Layer

DatS Layer

Figure 9 Phys Layer Overview

The Phys layer consists of a set of packages, the Phys package and few packages specific to each RDBMS / DAC. The Phys layer uses from Stan layer at most all interfaces and facilities. The relationship between Phys and DatS layers could be understood as follows:

The Phys layer can define structures and fetches data into DatS objects. DatS can also be used on its own. From DAC user’s point of view, the Phys layer consists of:

· RDBMS independent drivers – DbExp, ODBC packages;

· RDBMS specific drivers – Oracl, MySQL, MsAcc, MSSQL, DB2, ASA packages;

· Driver manager – Phys package.

All interfaces of Phys layer are exposed as COM interfaces and are defined in the daADPhysIntf unit. Other units, such as daADPhysManager from the Phys package, contain base (abstract) implementation of RDBMS dependent interfaces – IADPhysConnection, for example. They also contain concrete implementation for RDBMS independent interfaces – IADPhysManager, for example.

5.1 Phys Driver

The Phys Driver is the central building block of the Phys layer. It is a package implementing a set of interfaces:

· IADPhysDriverMetadata: Provides access to driver metadata, including supported connection definition parameters, driver description and version, etc.

· IADPhysDriver: Controls driver, enumerates established connection through this driver, creates IADPhysDriverMetadata interface, etc.

· IADPhysConnectionMetadata: Access to RDBMS meta data, including object lists, options supported by RDBMS, characteristics of SQL dialect, etc.

· IADPhysConnection: Controls the physical connection to RDBMS, handles transactions, creates physical commands, etc.

· IADPhysCommandGenerator: Generates data update and others command texts.

· IADPhysCommand: Executes RDBMS commands, fetches data, etc.

· IADPhysMetaInfoCommand: Fetches a list of objects from the RDBMS.

A DriverID identifies an AnyDAC driver, which is also the driver’s package name. A driver package consists of the following units:

· daADPhys[DriverID]Cli: Contains RDBMS Call Level Interface declarations.

· daADPhys[DriverID]Wrapper: Contains a set of classes, wrapping RDBMS CLI.

· daADPhys[DriverID]Meta: Contains RDBMS specific meta data retrieval code.

· daADPhys[DriverID]: Contains driver main code.

The DbExp package does not have CLI and Wrapper units, because Borland provides CLI (DBXpress) unit, and Wrapper is not required due to the high level of interface itself. MsAcc, MSSQL, DB2 and ASA packages have only Meta and driver units, because data access to these RDBMS is implemented using generic ODBC package.

A driver itself may be linked with an AnyDAC application either:

· Statically – including driver main unit into uses clause of your program units.

· Dynamically – driver package is a Delphi package (BPL) and will be loaded by Phys layer manager when it is required.

The Phys layer manager controls the driver live cycle. In general, the programmer should not change the driver live cycle. Below is a driver state diagram:

[image: image11.wmf]drsLoaded

ADPhysManager.

Open

ADPhysManagerObj.

State = dmsInactive

drsRegistered

drsFinalizing

drsInitializing

drsInactive

drsActive

drsStopping

ADPhysManagerObj.

UnregisterPhysConn

ectionClass

ADPhysManagerObj.

RegisterPhysConnec

tionClass

Driver interface

destroyed

ADPhysManager.CreateDriver

(first time call)

Timeout

driver interface

created

Done

ADPhysManager.Close

Request for driver instance

Reference count = 0

Driver instance

reference count is

decremented

Reference count > 0

Driver instance

reference count is

incremented

drsUnloaded

ADPhysManager.

Open

ADPhysManagerObj.

State = dmsInactive

Dynanamic linked drivers only

Figure 10 Phys Driver STD

Each driver’s main unit contains following code:

initialization

 ADPhysManager();

 ADPhysManagerObj.RegisterPhysConnectionClass(TADPhysOraclConnection);

end.

Here the driver package links the physical connection implementation class to the Phys layer manager object. It is only visible from the driver packages. To all other packages, only the manager interface is accessible. After drivers have registered a connection classes, the manager object may be activated to bring the driver in a state “registered”. When the first instance of any of driver interfaces is requested, the Phys layer manager will initialize the driver and create an interface implementation object. It is then in an “active“ state. The driver will change to “inactive” as soon as all references to the interfaces are released. Then, the driver manager wills timeout and, if no further interfaces are requested, the manager destroys the driver object. This will unload RDBMS client library. Then changes back to a driver state “registered”.

Some aspects that make AnyDAC applications safe and the programmer’s job easy are:

· A single instance of driver implementation object handles all physical connections established through the driver. All driver implementations are thread safe.

· A manager optimizes creation / destruction of the driver implementation object. The manager is also responsible for loading / unloading the dynamically linked drivers.

· The process is controlled by the manager and is isolated from driver interfaces consumers.

5.2 Phys Layer manager
The Phys layer manager primary goal is to control the live cycle of AnyDAC drivers. The manager creates a root driver interfaces – IADPhysManagerMetadata, IADPhysDriver and IADPhysConnection. The manager itself is represented by the top-level interface IADPhysManager. The daADPhysIntf unit has a global function ADPhysManager, returning a reference to the instance of IADPhysManager interface. The following declaration shows details:

 IADPhysManager = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2101}']

 // public

 procedure CreateConnection(const AConDef: IADStanConnectionDef;

 out AConn: IADPhysConnection; AIntfRequired: Boolean = True); overload;

 procedure CreateConnection(const AConDefName: String;

 out AConn: IADPhysConnection; AIntfRequired: Boolean = True); overload;

 procedure CreateDriver(const ADriverID: String;

 out ADrv: IADPhysDriver; AIntfRequired: Boolean = True);

 procedure CreateMetadata(out AMeta: IADPhysManagerMetadata);

 procedure Open;

 procedure Close(AWait: Boolean = False);

 property DriverDefs: IADStanDefinitions read GetDriverDefs;

 property ConnectionDefs: IADStanConnectionDefs read GetConnectionDefs;

 property Options: IADStanOptions read GetOptions;

 property State: TADPhysManagerState read GetState;

 end;

Property State returns manager current state. Following picture shows manager state diagram:

[image: image12.wmf]dmsInactive

dmsActive

dmsStoping

dmsTerminating

ADPhysManager.

Open

ADPhysManager.

Close

No

IADPhysDriver

references

Wait until all

IADPhysDriver

interfaces will be

released.

Phys manager

implementation object

is destroyed

Phys manager

implementation object

is created

Figure 11 Phys Manager STD

Before the manager can be used and, hence, any other Phys layer interface, the programmer should call its Open method. This causes the manager to open driver definition file – DriverDefs and create driver control structures (not driver implementation objects). After that point, the drivers are in drsRegistered state.

When the Phys layer manager’s reference counter is equal to zero, it will terminate and destroy the manager’s implementation object. The method Close is for the programmer to close it manually. If the manager is receiving a Close request, it waits until all connection and layer interfaces are released and will then close. To use it again, the Open method has to be called again.

While Phys manager is open and references to connections exists, it will protect ConnectionDefs connection definition on which IADPhysConnection was created. To change the filename of a driver definition file or a connection definition file, the manager must be inactive. Worth to mention, Phys manager is the top level in options hierarchy. Changes to Options will be inherited by IADPhysConnection and, consequently, by IADPhysCommand.

5.3 Driver definition file

Driver definition file consists from sections, one per driver, in following format:

[<DriverID>]

BaseDriverID = <DriverID>

Package<tool ID> = <path to BPL file>

VendorHome = <vendor specific home identifier>

VendorLib = <path to RDBMS client library>

<driver specific optional parameters>

This structure allows registering multiple logical drivers for the same physical AnyDAC driver, if they have different optional initialization parameters. For example, in case of MySQL, driver should load MySQL client library (LIBMYSQL.DLL) of appropriate version to MySQL server.

The DriverID is the ID of the logical driver. BaseDriverID is the ID of the physical driver and is optional if physical and logical drivers are the same. Tool ID is an abbreviation of the Borland tool, used to build AnyDAC applications. Supported are Delphi 6 – D6, Delphi 7 - D7 and Delphi 2005 – D9. The parameter Package<tool ID> is required only for dynamically loading drivers. It points to a Delphi package library containing the driver. Parameters VendorHome and VendorLib choose one of the installed RDBMS client libraries and they values are specific to RDBMS. For example, in case of Oracle, VendorHome value is a name of one of Oracle homes on the computer. Optional parameters are specific for driver.

Returning to the example with MySQL, the following driver definition file is possible:

[MySQL]

PackageD6=daADPhysMySQLPackD6.bpl

PackageD7=daADPhysMySQLPackD7.bpl

[MySQL327]

BaseDriverID=MySQL

VendorLib=c:\LIBMYSQL327.DLL

[MySQL410]

BaseDriverID=MySQL

VendorLib =c:\LIBMYSQL410.DLL

Actually, a driver definition file is not required in the following cases:

· Drivers are linked statically to AnyDAC application.

· For each physical driver will be one logical driver.

· No specific driver parameters must be supplied.

Phys manager uses IADStanDefinitions interface to work with driver definition file. The DefaultFileName is ‘AnyDACDrivers.ini’. The GlobalFileName property value is loaded from registry key HKCU\Software\da-soft\AnyDAC\ DriverFile, if it exists, otherwise from HKLM\….

5.4 Phys connection

Phys connection is represented by the IADPhysConnection interface. The Phys connection is responsible for maintaining the connection to the RDBMS, creating commands and for transactional control. The following declaration shows details:

 IADPhysConnection = interface (IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2105}']

 procedure CreateMetadata(out AConnMeta: IADPhysConnectionMetadata);

 procedure CreateCommandGenerator(out AGen: IADPhysCommandGenerator;

 const ACommand: IADPhysCommand = nil);

 procedure CreateCommand(out ACmd: IADPhysCommand);

 procedure CreateMetaInfoCommand(out AMetaCmd: IADPhysMetaInfoCommand);

 procedure Open;

 procedure Close;

 procedure TxBegin;

 procedure TxCommit;

 procedure TxRollback;

 // R/O

 property Driver: IADPhysDriver read GetDriver;

 property State: TADPhysConnectionState read GetState;

 property TxIsActive: Boolean read GetTxIsActive;

 property ConnectionDef: IADStanConnectionDef read GetConnection
Def;

 property CommandCount: Integer read GetCommandCount;

 property Commands[AIndex: Integer]: IADPhysCommand read GetCommands;

 property Messages: EADDBEngineException read GetMessages;

 // R/W

 property Options: IADStanOptions read GetOptions write SetOptions;

 property TxOptions: TADStanTxOptions read GetTxOptions write SetTxOptions;

 property ErrorHandler: IADStanErrorHandler read GetErrorHandler write SetErrorHandler;

 property Login: IADGUIxLoginDialog read GetLogin write SetLogin;

 property LoginPrompt: Boolean read GetLoginPrompt write SetLoginPrompt;

 end;

To create a connection interface, programmer should call one of Phys manager CreateConnection methods. One method gets a connection definition interface as parameter, another the connection string and internally builds the connection definition from this string. IADPhysConnection remains associated with Phys driver and connection definition until end of live. The Phys manager protects the connection definitions from being changed, if they have associated connection.
Open establishes a connection with the RDBMS using parameters from the connection definition ConnectionDef. If the Login property is initialised by login dialog interface, it will be called from the Open method. Calling Close closes the connection to the RDBMS. It is called automatically, when there are no more references to connection interface and the connection object is destroyed. Following is an example of IADPhysConnection creation:

 // Open manager

 ADPhysManager.ConnectionDefs.Storage.FileName := '$(ADHOME)\DB\ADDemoConnections.ini';

 ADPhysManager.Open;

 // Create connection using existing connection definition

 ADPhysManager.CreateConnection('Access_Demo', oConnIntf);

 oConnIntf.Open;

 // will automatically close connection and destroy it

 oConnIntf := nil;

 // Create connection using connection string

 ADPhysManager.CreateConnection('DriverID=MSAcc;Database=$(ADHOME)\DB\Data\ADDemo.mdb', oConnIntf);

 oConnIntf.Open;

The method TxBegin starts a new transaction, TxCommit – commits a transaction and TxRollback – rolls back the current transaction. AnyDAC supports nested transactions. Depending on the RDBMS, it is supported either by RDBMS or emulated by AnyDAC using save points. AnyDAC does not support multiple parallel transactions, like Borland Interbase does. For example, in case of Oracle we can write code:

// start TX

oConnIntf.TxBegin;

try

 …………

 // emulating start of nested TX -> set savepoit

 oConnIntf.TxBegin;

 try

 …………

 // emulating commit of nested TX -> nothing todo

 oConnIntf.TxCommit;

 except

 // emulating rollback of nested TX -> rollback to savepoit

 oConnIntf.TxRollback;

 raise;

 end;

 // commit TX

 oConnIntf.TxCommit;

except

 // rollback TX

 oConnIntf.TxRollback;

 raise;

end;

CreateCommand creates a Phys command and associates it with the Phys connection. Property Commands lists commands associated with this connection. Property ErrorHandler allows to assign an exception handler, which will intercept exceptions raised from Phys connection implementation methods.

5.5 Phys command

Phys command is represented by the IADPhysCommand COM interface. It is responsible for executing RDBMS commands, exchanging parameter values and fetching row sets from RDBMS. The following declaration shows details:

 IADPhysCommand = interface (IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2107}']

 // public

 procedure AbortJob(AWait: Boolean = False);

 procedure Close;

 procedure Disconnect;

 function Define(ADatSManager: TADDatSManager; const ATabMaps: IADPhysTableMappings = nil;

 AMetaInfoMergeMode: TADPhysMetaInfoMergeMode = mmReset): TADDatSTable; overload;

 function Define(ATable: TADDatSTable; const ATabMaps: IADPhysTableMappings = nil;

 AMetaInfoMergeMode: TADPhysMetaInfoMergeMode = mmReset): TADDatSTable; overload;

 procedure Execute(ATimes: Integer = 0; AOffset: Integer = 0);

 function Fetch(ATable: TADDatSTable; AAll: Boolean = True): Integer; overload;

 procedure Fetch(ADatSManager: TADDatSManager; const ATabMaps: IADPhysTableMappings = nil;

 AMetaInfoMergeMode: TADPhysMetaInfoMergeMode = mmReset); overload;

 procedure Open;

 procedure Prepare(const ACommandText: String = '');

 procedure Unprepare;

 // R/O

 property Connection: IADPhysConnection read GetConnection;

 property State: TADPhysCommandState read GetState;

 property RowsAffected: Integer read GetRowsAffected;

 property ErrorAction: TADErrorAction read GetErrorAction;

 // R/W

 property Options: IADStanOptions read GetOptions write SetOptions;

 property SchemaName: String read GetSchemaName write SetSchemaName;

 property CatalogName: String read GetCatalogName write SetCatalogName;

 property BaseObjectName: String read GetBaseObjectName write SetBaseObjectName;

 property CommandKind: TADPhysCommandKind read GetCommandKind write SetCommandKind;

 property CommandText: String read GetCommandText write SetCommandText;

 property Params: TADParams read GetParams;

 property Macros: TADMacros read GetMacros;

 property ParamBindMode: TADPhysParamBindMode read GetParamBindMode write SetParamBindMode;

 property Overload: Word read GetOverload write SetOverload;

 property NextRecordSet: Boolean read GetNextRecordSet write SetNextRecordSet;

 property SourceObjectName: String read GetSourceObjectName write SetSourceObjectName;

 property ErrorHandler: IADStanErrorHandler read GetErrorHandler write SetErrorHandler;

 property AsyncHandler: IADStanAsyncHandler read GetAsyncHandler write SetAsyncHandler;

 property MappingHandler: IADPhysMappingHandler read GetMappingHandler write SetMappingHandler; end;

The following diagram shows calls flow for IADPhysCommand. Then it will be discussed.

[image: image13.wmf]IADPhysConnection.

CreateCommand

CommandKind :=;

CommandText := 'SQL';

Prepare

Prepare('SQL')

Define(DatSTable)

Fetch(DatSTable)

Unprepare

Params[i].DataType := ...;

Params[i].Size := ...;

etc

Params[i].Value := ...;

Execute

Open

Close

If no parameters

More parameters

to setup

More parameters

to set values

No rowset

Has rowsets (SELECT)

Define DatS structure,

if not yet

More to query

More to execute

Is stored procedure

Is other command

Figure 12 Phys Command Call Flow Diagram

The programmer should set CommandText and CommandKind properties to define command. Explicit setting of command kind is only required for stored procedures and for non-SQL data sources.

Command text may have parameters and macros. If the command is a stored procedure, the command cannot contain macros and the parameter list is automatically filled after Prepare has been is called. For all other command kinds, parameter list and macros list will be accessible after command text is assigned to command. Macro features are explained in the next chapter.

The Prepare method, internally performs macro expansion, submits command text to RDBMS and binds the client side parameter and row set buffers to the RDBMS command control structures. Therefore, parameter types and macro values cannot be changed after they have been bound to the control structures.

Following is an example of defining and preparing command:

 oConnIntf.CreateCommand(oCommIntf);

 with oCommIntf do begin

 CommandText := ‘select * from !tab where ID = :ID’;

 // Setting up the macro ‘TAB’

 with Macros [0] do begin

 Value := 'Employees';

 DataType := mdIdentifier;

 end;

 // Setting up the param ‘ID’

 with Params [0] do begin

 Value := 1000;

 DataType := ftInteger;

 end;

 Prepare;

The programmer may assign parameter values and choose a method for command execution. Different methods should be used whether the command returns a row set or not. The classical command returning a row set is the SQL SELECT command. If the command returns a row set, the methods Define, Open, Fetch and Close should be used. If the command does not return a row set, we use the method Execute.

The method Define defines the structure of TADDatSTable (columns, primary key, nested tables). Calling Define can be omitted, if the DatS table structure is already defined. It is worth to mention, before defining the structure AnyDAC will call the table method Reset. And it will destroy all table sub objects, like columns, views and constraints.

Calling the Open method actually executes the command and initiates retrieval of a row set. AnyDAC supports different modes for fetching data, such as fetch-all, fetch-incrementally, and a few others. That is controlled by Options.FetchOptions. Fetch-all will fetch all rows from a row set at first Fetch call. If the programmer uses the incremental mode, the Fetch method call fetches the number of rows specified in Options.FetchOptions.RowsetSize and returns actual number of rows fetched. AnyDAC will automatically call the Close method after all rows are fetched or the programmer can call it explicitly.

Following code proceeds previous example:

 Define(oTab);

 Open;

 Fetch(oTab, True);

 end;

 PrintRows(oTab, Console.Lines);

If the format options Options.FormatOptions are set, the command will automatically translate the data format from server to client and vice-versa. Setting Options.ResourceOptions, the programmer controls server and client resources usage. Setting the option AsyncCmdMode affects Open, Execute and Fetch methods and controls the asynchronous execution mode. With the AsyncCmdTimeout option the programmer can set a time period after which a command will stop execution and AnyDAC will raise an exception.

The command’s AbortJob method cancels a method execution. Calling AbortJob has no effect on drivers, which do not support that feature. If a command is not needed anymore, Unprepare can be called to release the resources used on the database server. Also, if Options.ResourceOptions.Disconnectable is True and application has too many prepared commands, AnyDAC will automatically unprepare least used commands.

The property ErrorHandler allows assigning an exception handler, which will intercept exceptions raised from methods of the Phys command implementation. And the property AsyncHandler allows assigning a handler, which will be called after asynchronous command execution is finished.

5.5.1 Macro processing

Setting CommandText will fill the Macros collection property. At command Prepare call, the AnyDAC macro processor transforms command text into a form understood by the RDBMS. This means, the macros are not visible to the RDBMS. Setting the property Options.ResourceOptions.MacroCreate turns macro processing on or off.

AnyDAC supports two kinds of macro instructions:

· Substitution variables: They allow substitution to put parameters in command text. This is to extend the use of parameters. For example, to parameterise a table name in FROM clauses or column names in SELECT clauses substitution variables can be used but parameters are of no use.

· Escape sequences: They allow writing RDBMS independent SQL commands.

5.5.1.1 Substitution variables

Substitution variables starts with a ‘!’ or ‘&’ symbol and is followed by a macro variable name. For example:

SELECT * FROM &SomeTab

The symbols have the following meaning:

· ‘!’ - “string” substitution mode. Macro value will be substituted “as is”, directly into the command text without any transformations.

· ‘&’ – “SQL” substitution mode. Macro value will be substituted depending on the macro data type, using target RDBMS syntax rules.

5.5.1.2 Escape sequences

AnyDAC has 5 kinds of escape sequences:

· Allowing constant substitution.

· Allowing identifier substitution.

· Conditional substitution.

· LIKE operator escape sequence.

· Scalar functions.

Constant substitution escape sequences allow writing constants in command text, independent on RDBMS syntax and regional settings. Following describes escape sequences expansion to RDBMS syntax:

	{e <number>}
	Number constant of numeric format. For example: {e 123.7} -> 123,7 on MSAccess

	{d <date>}
	Date constant. Here <date> must be specified in “yyyy-mm-dd” format. For example: {d 2004-08-30} -> TO_DATE(‘2004-08-30’, ‘yyyy-mm-dd’) on Oracle

	{t <time>}
	Time constant. Here <time> must be specified in “hh24:mi:ss” format. For example: {t 14:30:00} -> CONVERT(DATETIME, '14:30:00', 114) on MSSQL

	{dt <date & time>}
	Date and time constant. Here <date & time> must be in format as above.

	{l <boolean>}
	Boolean constant. Here <boolean> is False or True. If RDBMS supports Boolean data type, then sequence expands to that type constant, otherwise to numeric values 0 or 1.

Identifier substitution escape sequence allows abstracting from RDBMS specific identifier quoting rules. The syntax is:

	{id <identifier name>}
	Expands to RDBMS specific quoted identifier syntax. For example: {id Order Details} -> “Order Details” on Oracle.

Conditional substitution escape sequence allows substitute text into command, depending on either RDBMS application is connected to, either on macro variable value. Escape sequence syntax is:

	{if (X1, Y1, …, XN, YN, YN+1) }
	Here Xi is either:

· AnyDAC RDBMS kind identifier. So, if application is connected to this RDBMS, then Yi text will be substituted into command.

· Macro variable. If it value is not empty, then Yi text will be substituted into command.

If neither of conditions is meted and YN+1 text is specified, then it will be substituted into command. For example: {if (Oracl, TO_CHAR, MSSQL, CONVERT)} -> TO_CHAR on Oracle. {if (&v1, Me, &v2, You, We)} -> You if &v1 has empty value and &v2 nonempty one.

The escape functions syntax and set follows close to the rules of ODBC escape functions. In Appendix 2 AnyDAC escape functions are listed and it is explained how to use them. Escape functions have the following syntax:

{fn <function name>(<arguments>)}

For example:

SELECT * FROM MyTab WHERE Year = {fn YEAR({fn NOW()}}

In this example, the RDBMS searches for records where column named ‘Year’ equals to current year. Depending on the target RDBMS, this command is translated into the correct SQL dialect for the RDBMS. If the target database system is Oracle, the resulting command text would be:

SELECT * FROM MyTab WHERE Year = TO_NUMBER(TO_CHAR(SYSDATE, 'YYYY'))

5.5.2 Asynchronous execution

Phys command supports asynchronous execution of methods: Open, Execute and Fetch. The chapter “Async operation execution” describes asynchronous execution modes. The property Options.ResourceOptions.AsyncCmdMode controls execution mode of listed methods. And property AsyncCmdTimeout defines maximum allowed time to perform method. If execution will take more time, then AnyDAC will raise exception and method execution will be aborted. Also programmer may cancel execution of call using command’s AbortJob method.

If driver does not supports command cancellation, then execution will be continued after AbortJob method is called in following cases:

· Open, Execute methods of MySQL driver.

· Open, Execute methods of MSAccess driver.

After asynchronous execution of command is finished, AnyDAC calls the method HandleFinished of IADPhysCommand.AsyncHandler handler, if it is assigned. Parameter AState receives an asynchronous method completion status:

· asFinished - if execution finished successfully.

· asAborted – if execution was aborted.

· asFailed – if execution failed due to exception was raised.

· asExpired – if execution was timed out.

The implementation of IADStanAsyncHandler interface:

· in case of IADPhysCommand is the programmer responsibility.

· in case of TADCustomCommand component is already done by AnyDAC developers. The events AfterOpen, AfterExecute, AfterFetch are fired after corresponding action is completed.

For example, following code will run command in asynchronous mode:

type

 TMyAsyncHandler = class(TInterfacedObject, IADStanAsyncHandler)

 procedure HandleFinished(const AInitiator: IADStanObject;

 AState: TADStanAsyncState);

 end;

procedure TMyAsyncHandler.HandleFinished(const AInitiator: IADStanObject;

 AState: TADStanAsyncState);

const

 StateNames: array[TADStanAsyncState] of String = ('asInactive', 'asExecuting',

 'asFinished', 'asFailed', 'asAborted', 'asExpired');

begin

 writeln(' The HandleFinished is called - ' + StateNames[AState]);

end;

var

 oCmd: IADPhysCommand;

……

 oCmd.CommandText := ‘update SalesHistory set Price = Price + Tax, Tax = 0’;

 oCmd.Options.ResourceOptions.AsyncCmdMode := amAsync;

 oCmd.Options.ResourceOptions.AsyncCmdTimeout := 10000;

 oCmd.AsyncHandler := TmyAsyncHandler.Create;

 oCmd.Prepare;

 oCmd.Execute;

 // 1) here we will not wait for command to be finished

 // 2) if command will execute more than 10 sec, it will be canceled

 // 3) in any case TMyAsyncHandler.HandleFinished will be called

5.5.3 Batch command execution

In general, the idea of batch command execution is to submit a single RDBMS command with an array of parameters. All parameter values are arrays of the same size. And we can ask the RDBMS to execute a command once for each array item. This technique reduces the amount of communication between RDBMS and client enormously and speeds up the execution. Following picture shows that:

[image: image14.wmf]COMMAND

INSERT INTO MyTab (F1, F2, F3) VALUES (:F1, :F2, :F3)

Param :F1

'A'

'B'

'C'

'D'

'E'

Param :F2

500

200

25

1969

80

Param :F3

07-nov-1917

05-aug-1969

01-sep-1995

01-jan-2004

18-dec-2003

AnyDAC application executes

command with 5 batch size

RDBMS receives batch

command and inserts 5 rows

F1

F2

F3

'A'

500

07-nov-1917

'B'

200

05-aug-1969

'C'

25

01-sep-1995

'D'

1969

01-jan-2004

'E'

80

18-dec-2003

Figure 13 Batch Execution Mode

AnyDAC supports batch command execution mode using the native RDBMS capabilities, if the driver supports batch mode, or emulating batch execution, if the driver does not support it. At the moment, the Oracle, MSSQL and MySQL drivers support native batch execution mode.

Programmer should use the following IADPhysCommand method to do batch processing:

procedure Execute(ATimes: Integer = 0; AOffset: Integer = 0);

Here, ATimes defines the size of a batch job. AOffset is index of first item in the batch job. If an error occurs, such as a violation of constraints, then the error in the job will be handled as follows:

· If ErrorHandler is not assigned, then RowsAffected property will be equal to amount of rows successfully processed before the row failed and ErrorAction property value will be eaFail.

· If ErrorHandler is assigned, then ErrorHandler.HandleException will receive a special exception of class EADPhysArrayExecuteError. It has a property Action, which allows returning the kind of action. For example, it may be eaRetry – repeat execution from failed row.

Following code shows example, how to execute batch command:

var

 oCmd: IADPhysCommand;

……

 with oCmd do begin

 CommandText := ‘insert into Customers (ID, Name) values (: ID, :Name)’;

 // Set up parameters

 Params[0].DataType := ftInteger;

 Params[1].DataType := ftString;

 Params[1].Size := 40;

 // Set up parameters' array size

 Params.ArraySize := 10000;

 // Prepare command

 Prepare;

 // Set parameter values

 for i := 0 to 10000 - 1 do begin

 Params[0].AsIntegers[i] := i;

 Params[1].AsStrings[i] := 'Somebody ' + IntToStr(i);

 end;

 // Execute batch

 Execute(10000, 0);

 end;

It is important to properly setup parameters, including setting property Size for string parameters. In case of Oracle, for example, AnyDAC will allocate ~1400 bytes for each string parameter value, if this parameter property Size is not assigned. So, for 10,000 of values will be allocated 14Mb buffer and due to some Oracle issues, Execute call will hang up.

5.5.4 Stored procedure execution

The important difference between executing stored procedures and other commands is the automatic setup of parameters and its types. AnyDAC handle all on its own. It does not support manual definition of parameters. In case of a stored procedure, the command text could look like this:

[Catalogue name.][Schema name.][Package name.][Stored procedure name]

Also, each part of a name can be assigned to the corresponding properties:

· Catalogue name to CatalogName.

· Schema name to SchemaName.

· Package name to BaseObjectName.

· Stored procedure name to CommandText.

CommandKind must be one of following:

· skStoredProc. If set, AnyDAC will automatically detect if the procedure returns a row set or not and will set CommandKind to either skStoredProcNoCrs or skStoredProcWithCrs.

· skStoredProcNoCrs. Procedure does not return row sets. Use Execute method.

· skStoredProcWithCrs. Procedure returns row sets. Use Open method.

DApt Layer

[image: image15.wmf]DApt Layer interfaces

 IADDAptTableAdapter

 IADDAptTableAdapters

 IADDAptManagerAdapter

 IADDAptManager

DApt Layer

DApt Package

gsADDAptIntf

gsADDAptManager

Stan Layer

DatS Layer

Phys Layer

Figure 14 DApt Layer Overview

DApt layer consists from a single DApt package. DApt layer uses following interfaces and facilities from the Stan layer:

· Error handling - IADStanErrorHandler interface and EADException class.

· Option handling – IADStanOptions interface and option classes.

· Parameters – TADParams, TADParam classes.

· Monitor facilities – IADMoniClient interface.

And from GUIx layer is used AnyDAC wait cursor facility – IADGUIxWaitCursor interface. Relation of DApt, Phys and DatS layers better will be described as – DApt layer is integrator of Phys and DatS layers. DApt layer uses from Phys and DatS layers almost all interfaces and facilities.

All interfaces of layer are exposed as COM interfaces and are defined in daADDAptIntf unit. daADDAptManager unit contains implementation.

Main functions of DApt layer are:

· Mapping of Phys layer result set structure into DatS layer structures.

· Automatic generation or usage of existing Phys layer commands to post updates from DatS layer objects to RDBMS.

· Reconciliation of errors after posting updates.

All that functionality is optional and application programmer may implement that. But DApt layer brings new level of flexibility and solves standard tasks of application programmer. Following picture shows object model of DApt layer:

[image: image16.wmf]TADDAptColumnMappings

IDEPhysColumnMapping

IADDAptTableAdapters

IDEDAptTableAdapter

IDEDAptTableAdapter

IADDAptTableAdapter

IDEPhysColumnMapping

TADDAptColumnMapping

IADDAptManagerAdapter

Figure 15 DApt Layer Object Model

5.6 Structure Mapping
One application may need to work as with different RDBMS’s as with different versions of DB schema. For example, in MySQL DB we have table:

	`Customers`

	ID

	Name

	Address

In Oracle DB we have table:

	CUSTOMER

	CustID

	Name

	Addr

To achieve structure mapping of Phys layer result sets into DatS layer structures, AnyDAC software should be able:

· Map TADDatSTable structure (column list) to physical table structure in DB.
· Map TADDatSTable name to physical (source) table name in DB.
· To verify / alter existing TADDatSTable structure according to physical table structure in DB.
TADDAptColumnMappings represents a collection of TADDAptColumnMapping objects. TADDAptColumnMapping class maps SELECT list item of IADPhysCommand or physical DB column to single TADDatSColumn. Following declaration shows details:

 TADDAptColumnMapping = class(TCollectionItem)

 public

 property DatSColumn: TADDatSColumn read GetDatSColumn;

 published

 property SourceColumnName: String read FSourceColumnName write SetSourceColumnName;

 property SourceColumnID: Integer read FSourceColumnID write SetSourceColumnID default -1;

 property UpdateColumnName: String read GetUpdateColumnName write FUpdateColumnName;

 property DatSColumnName: String read GetDatSColumnName write FDatSColumnName;

 end;

SourceColumnName is a name of physical column in SELECT list item. UpdateColumnName is a name of physical column in DB table, which will receive updates from DatS column. If UpdateColumnName property value is empty, then SourceColumnName will be used. DatSColumnName is a name of DatS column. If DatSColumnName property is empty, then SourceColumnName will be used. DatSColumn property returns column object named DatSColumnName.

Interface IADDAptTableAdapters represents a collection of IADDAptTableAdapter interfaces. It maps Phys command result set or physical DB table to single TADDatSTable. Following declaration shows details (just mapping related properties):

 IADDAptTableAdapter = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2304}']

 // public

 ……………………………………………….

 property SourceRecordSetID: Integer read GetSourceRecordSetID write SetSourceRecordSetID;

 property SourceRecordSetName: String read GetSourceRecordSetName write SetSourceRecordSetName;

 property UpdateTableName: String read GetUpdateTableName write SetUpdateTableName;

 property DatSTableName: String read GetDatSTableName write SetDatSTableName;

 property DatSTable: TADDatSTable read GetDatSTable write SetDatSTable;

 property ColumnMappings: TADDAptColumnMappings read GetColumnMappings;

 ……………………………………………….

 end;

SourceRecordSetName is a name of Phys layer command result set. In place of SourceRecordSetName programmer can specify SourceRecordSetID. UpdateTableName is a name of physical DB table, which will receive updates from DatS table. If UpdateTableName property value is empty, then SourceRecordSetName will be used. DatSTableName is a name of DatS table. If DatSTableName property is empty, then SourceRecordSetName will be used. DatSTable property returns table object named DatSTableName. ColumnMappings property returns column-mapping collection.

Following example shows how to map table from MySQL DB to the same structure as it is in Oracle DB:

 // SrcName: Customers -> DatSName: Customer

 oAdapt := oSchAdapt.TableAdapters.Add('Customers', 'Customer');

 // SrcName: ID -> DatSName: CustID

 oAdapt.ColumnMappings.Add('ID', 'CustID');

 // SrcName: Name -> DatSName: Name

 oAdapt.ColumnMappings.Add('Name');

 // SrcName: Address -> DatSName: Addr

 oAdapt.ColumnMappings.Add('Address', 'Addr');

5.7 Posting updates to DB

IADDAptTableAdapter, IADDAptTableAdapters and IADDAptSchemaAdapter interfaces are responsible for this functionality. It is possible to create as standalone DatS table adapter as DatS manager schema adapter.

5.7.1 DatS Table Adapter

IADDAptTableAdapter is responsible for posting updates from DatS row to DB. Table adapter handles rows from single DatS table, pointed by DatSTable property. To each kind of DatS row update, adapter links specific Phys layer command. Row update kind is determined using TADDatSRow.RowState property value:

· rsInserted – row is inserted. By default, will be performed INSERT SQL command.

· rsDeleted – row is deleted. By default, will be performed DELETE SQL command.

· rsModified – row is modified. By default, will be performed UPDATE SQL command.

· rsUnchanged – row is unchanged. Nothing to do.

To post updates following row versions will be used:

· rvOriginal – original row version, as row was fetched from DB or as it is after AcceptChanges or RejectChanges last call. Adapter use this version to determine which row in DB to update or delete.

· rvCurrent – current row version, after row was modified. Adapter use this version to determine new column values for inserted or modified rows.

If specific command is not assigned, then adapter will generate it automatically. For some kinds of updates adapter will perform few DB physical commands. For example, in case of modified row and pessimistic locking mode, following sequence of commands will be performed:

· Lock row. In case of MSSQL it will be SELECT … WITH (ROWLOCK,UPDLOCK) … SQL command.

· Update row – SQL UPDATE command.

Other example - in case of appended row with auto incremental fields following sequence of commands will be performed:

· Append row – SQL INSERT command.

· Reread auto incremental field value - SELECT @@IADNTITY command.

Following declaration shows details:

 IADDAptTableAdapter = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2304}']

 // public

 ……………………………………………….

 function Update(AMaxErrors: Integer = -1): Integer; overload;

 function Reconcile: Boolean;

 procedure Reset;

 procedure Update(ARow: TADDatSRow; var AAction: TADErrorAction;

 AUpdRowOptions: TADPhysUpdateRowOptions = [];

 AForceRequest: TADPhysRequest = arFromRow); overload;

 procedure Lock(ARow: TADDatSRow; var AAction: TADErrorAction;

 AUpdRowOptions: TADPhysUpdateRowOptions = []);

 procedure UnLock(ARow: TADDatSRow; var AAction: TADErrorAction;

 AUpdRowOptions: TADPhysUpdateRowOptions = []);

 property SelectCommand: IADPhysCommand read GetSelectCommand write SetSelectCommand;

 property InsertCommand: IADPhysCommand read GetInsertCommand write SetInsertCommand;

 property UpdateCommand: IADPhysCommand read GetUpdateCommand write SetUpdateCommand;

 property DeleteCommand: IADPhysCommand read GetDeleteCommand write SetDeleteCommand;

 property LockCommand: IADPhysCommand read GetLockCommand write SetLockCommand;

 property UnLockCommand: IADPhysCommand read GetUnLockCommand write SetUnLockCommand;

 property FetchRowCommand: IADPhysCommand read GetFetchRowCommand write SetFetchRowCommand;

 property Options: IADStanOptions read GetOptions;

 property ErrorHandler: IADStanErrorHandler read GetErrorHandler write SetErrorHandler;

 property UpdateHandler: IADDAptUpdateHandler read GetUpdateHandler

 write SetUpdateHandler;

end;

Properties XXXXCommand references to commands to use to post updates to DB (Insert, Update, Delete, Lock, UnLock), refresh single row (FetchRow) and fetch all row set (Select). Update (AMaxErrors) method post updates from DatS table updates journal (TADDatSTable.Updates) to DB. Reconcile method allows reconciling errors after posting updates. Other methods with first ARow parameter operate on single specified row.

5.7.2 DatS Manager Adapter

Collection of table adapters – IADDAptTableAdapters – helps to match rows from DatS tables to table adapters. So, row changes from TADDatSManager updates journal may be posted to DB in order rows was changed in application. IADDAptSchemaAdapter interface controls this process, delegating specific row handling to appropriate table adapter. Following declaration shows details:

 IADDAptSchemaAdapter = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2306}']

 function Update(AMaxErrors: Integer = -1): Integer;

 function Reconcile: Boolean;

 property DatSManager: TADDatSManager read GetDatSManager write SetDatSManager;

 property TableAdapters: IADDAptTableAdapters read GetTableAdapters;

 property ErrorHandler: IADStanErrorHandler read GetErrorHandler write SetErrorHandler;

 property UpdateHandler: IADDAptUpdateHandler read GetUpdateHandler

 write SetUpdateHandler;

 end;

Schema adapter will handle DatS manager, pointed by DatSManager property. TableAdapters property is a collection of DatS table adapters. Each of them will post updates belonging to associated DatS table to DB. Method Update post updates from DatS manager updates journal (TADDatSManager.Updates) to DB. Method Reconcile allows reconciling errors after posting updates.

5.7.3 Concurrency Control

DApt layer uses DB row locking for DB concurrency access control. AnyDAC implements 2 kinds of row locking:

· Optimistic. Optimistic row locking schema does not explicitly lock row, but expecting only single user will update row at a time. At posting updates, AnyDAC verifies row was not changed after fetching, using original column values.

· Pessimistic. Pessimistic row locking schema explicitly lock row, when it is required. This mode depends on RDBMS locking implementation. For example, MS Access does not support explicit locking.

UpdateOptions has properties controlling locking mode:

· LockMode. Defines kind of row locking. lmPessimistic – pessimistic mode, lmOptimistic – optimistic mode, lmRely – no AnyDAC locking activity at all.

· LockPoint. Defines a moment when to lock a row. lpImmediate – immediately before editing row, lpDeferred – deferred until row changes will be posted to DB.

· LockWait. If True, then AnyDAC will wait until row lock acquired by other user is released.

· UpdateMode. This property controls optimistic locking mode. It is similar to standard Delphi UpdateMode property.

Explicitly locked rows will be unlocked at end of transaction where row was locked.

5.7.4 Row Refreshing

Some RDBMS may modify rows after posting changes to DB. Classic examples of that are:

· Auto incremental fields. IDENTITY columns in MSSQL, AUTO_INCREMENT columns in MySQL and COUNTER columns in MSAccess. When new record is inserted into DB, RDBMS will automatically assign unique auto incremented value to column.

· DEFAULT field option. When new record is inserted into DB and field with DEFAULT option is not in INSERT command, then RDBMS will automatically assign specified in DEFAULT option value to column.

· Triggers. When record change is posted to DB, trigger defined for updating table may modify row.

In these cases DApt layer can fetch column values modified by RDBMS to client. Following properties controls that:

· TADDatSColumn.Attributes. Property is a set of enumerated values, which may contain following attributes: caAutoInc – column is auto incremental, caROWID – column is RDBMS row identifier, caDefault – column has default value.

· TADDatSColumn.Options. Property is a set of enumerated values, which may contain following options: coAfterInsChanged – column value is changed by RDBMS after row is inserted, coAfterUpdChanged – column value is changed by RDBMS after row is updated.

· TADUpdateOptions.AutoRefresh. If property value is True (default value), then DApt layer will automatically refresh changed by RDBMS columns after posting updates.
Attributes are column physical attributes (how it is defined in DB), which DB driver will setup automatically in most cases. Programmer may change options, although AnyDAC automatically sets column options, basing on their attributes.

Using AnyDAC, following classic task may be solved without algorithm coding, but just setting up appropriate objects properties. Let say we have 2 MSSQL DB tables:

[image: image17.wmf]MASTER_TAB

* ID int IDENTITY(1,1)

 Name varchar(20)

DETAIL_TAB

Master_ID int

Name varchar(20)

Figure 16 Tables related through FK

Now we want to fill these tables on client in cached updates mode, then post updates (insert new records) to DB. Main requirement is to preserve relation of detail records with they master records. Following example performs that:

var

 oSchAdapt: IADDAptSchemaAdapter;

 oMasterAdapt, oDetailAdapt: IADDAptTableAdapter;

 oMasterRow: TADDatSRow;

begin

 // 1. create master table adapter

 oMasterAdapt := oSchAdapt.TableAdapters.Add('master_tab');

 oMasterAdapt.SelectCommand := oConn.CreateCommand;

 oMasterAdapt.SelectCommand.Prepare('select * from master_tab');

 oMasterAdapt.Define;

 // 2. Mark ID column autoincrementing with negative step, so it

 // new generated value will be always distinguishing from fetched

 // from DB one.

 with oMasterAdapt.DatSTable.Columns.ItemsS['ID'] do begin

 AutoIncrement := True;

 AutoIncrementSeed := 0;

 AutoIncrementStep := -1;

 end;

 oMasterAdapt.Fetch(True);

 // 3. create detail table adapter

 oDetailAdapt := oSchAdapt.TableAdapters.Add('detail_tab');

 oDetailAdapt.SelectCommand := oConn.CreateCommand;

 oDetailAdapt.SelectCommand.Prepare('select * from detail_tab');

 oDetailAdapt.Fetch(True);

 // 4. create primary key for Master table

 with oSchAdapt.DatSManager.Tables.ItemsS['master_tab'] do

 Constraints.AddUK('master_pk', 'ID', True);

 // 5. create foreign key Detail -> Master with cascading update

 with oSchAdapt.DatSManager.Tables.ItemsS['detail_tab'] do begin

 with Constraints.AddFK('fk_detail_master', 'master_tab', 'ID', 'Master_ID') do begin

 UpdateRule := crCascade;

 DeleteRule := crCascade;

 AcceptRejectRule := arCascade;

 end;

 end;

 // 5. fill DatS tables

 oMasterRow := oMasterAdapt.DatSTable.Rows.Add([Unassigned, 'RecMaster']);

 oDetailAdapt.DatSTable.Rows.Add([Unassigned, oMasterRow.GetData('ID'), 'RecDetail']);

 // 6. post all updates in single consistent batch. Here new (assigned by DB)

 // Master table ID will be fetched, assigned to DatS row, and Detail table

 // will be cascade updated. Then update of Detail row will be posted to DB.

 oSchAdapt.Update;

There at Update call following will happen:

· Inserting new master row into MASTER_TAB DB table.

· Fetching new ID column value and set it to processing master table row.

· Firing cascading updates of detail rows Master_ID column.

· Inserting new detail row into DETAIL_TAB DB table. Here Master_ID column will have value as it was inserted into MASTER_TAB table.

5.7.5 Commands Handling

As was mentioned above, each physical command performed by adapter to post updates from DatS row to DB may be overridden by application programmer. For that one should create command and assign it to one of IADDAptTableAdapter.XXXXCommand properties. Command should have parameter names of special form:

· :NEW_<column name> or <column name>. Input parameter will receive as value current version of column value (rvCurrent). Output parameter value will be assigned after command execution to column.

· :OLD_<column name>. Input parameter will receive as value original version of column value (rvOriginal).

If command is not assigned explicitly, DApt layer will generate it automatically. It will be optimised for target RDBMS command language dialect. Table adapter will cache generated commands, if TADUpdateOptions.CacheUpdateCommands property value is True. Otherwise, after usage, command interface will be discarded. If adapter need to regenerate command, cached command interface will be discarded too and command will be regenerated.

If it is desirable to completely override standard adapter algorithms, then programmer should use update handler. It may be assigned to IADDAptTableAdapter.UpdateHandler property. Which is of IADDAptUpdateHandler interface type. Following declaration shows details:

 IADDAptUpdateHandler = interface(IInterface)

 ['{3E9B315B-F456-4175-A864-B2573C4A2302}']

 procedure ReconcileRow(ARow: TADDatSRow; var Action: TADDAptReconcileAction);

 procedure UpdateRow(ARow: TADDatSRow; ARequest: TADPhysUpdateRequest;

 AUpdOptions: TADPhysUpdateOptions; var AAction: TADErrorAction);

 end;

It has UpdateRow method, which will be called by IADDAptTableAdapter.Update method.

5.7.6 Error Handling

At updates posting RDBMS errors may happen, for example, uniqueness violation or other constraints violation. AnyDAC represents each error as an exception, which will be associated with appropriate DatS row, using TADDatSRow.Error property. Updates will be posted to DB using Update(AMaxErrors) method until AMaxErrors errors will happen. After that errors may be reconciled using Reconcile method, it requires IADDAptTableAdapter.UpdateHandler property to be assigned. Reconciliation will call ReconcileRow method.

Appendix 1. TADDataType

	Data type
	Description
	Range

	dtBoolean
	Boolean data type with values – True and False.
	True, False

	dtSByte
	Signed 1-byte integer
	-128…127

	dtInt16
	Signed 2-byte integer
	-32768…32767

	dtInt32
	Signed 4-byte integer
	-2147483648…2147483647

	dtInt64
	Signed 8-bte integer
	-2^63…2^63-1

	dtByte
	Unsigned 1-byte integer
	0...255

	dtUInt16
	Unsigned 2-byte integer
	0…65535

	dtUInt32
	Unsigned 4-byte integer
	0…4294967295

	dtUInt64
	Unsigned 8-byte integer
	0…2^64-1

	dtDouble
	8-byte native IA-32 floating point value. Corresponds to Delphi Double data type
	5.0 x 10^-324 … 1.7 x 10^308

	dtCurrency
	8-byte fixed point value. Corresponds to Delphi Currency data type
	-922337203685477.5808 … 922337203685477.5807

	dtBCD
	Binary Coded Decimal. Corresponds to Delphi TBcd data and ftBcd field types.
	-10^64+1 …10^64-1

	dtFmtBCD
	Binary Coded Decimal. Corresponds to Delphi TBcd data and ftFmtBCD field types.
	-10^64+1 …10^64-1

	dtDateTime
	Encoded as TDateTimeRec data and time. Consist from 2 Longint values. Low order – date and high order – time.
	See dtTime and dtDate.

	dtTime
	Encoded as Longint time. Equals to number of milliseconds science midnight.
	-2147483648…2147483647

	dtDate
	Encoded as Longint date. Equals to number of days science beginning of current era.
	-2147483648…2147483647

	dtDateTimeStamp
	Date and time stamp. Corresponds to Delphi TSQLTimeStamp data and ftTimeStamp field types.
	See TSQLTimeStamp for details.

	dtAnsiString
	Ansi character string.
	~2^31 characters

	dtWideString
	Unicode character (16 bit per char) string.
	~2^30 characters

	dtByteString
	Byte string.
	~2^31 bytes

	DtBlob
	Long byte string (Blob).
	~2^32 bytes

	dtMemo
	Long Ansi character string (Memo).
	~2^32 characters

	dtWideMemo
	Long Unicode character string (Memo).
	~2^31 characters

	dtHBlob
	As dtBlob, but corresponds to Oracle BLOB data type and other handle-based BLOB data types.
	~2^32 bytes

	dtHMemo
	As dtMemo, but corresponds to Oracle CLOB data type and other handle-based ANSI text BLOB data types.
	~2^32 characters

	dtWideHMemo
	As dtWideMemo, but corresponds to Oracle NCLOB data type and other handle-based Unicode text BLOB data types.
	~2^31 characters

	dtRowSetRef
	Nested data set. Value is an “invariant” data type, represented by list of nested rows. Corresponds to Delphi ftDataSet field type.
	--

	dtCursorRef
	Nested data set. Value is an “invariant” data type, represented by list of nested rows. Corresponds to Delphi ftCursor field type.
	--

	dtRowRef
	Nested row. Value is an “invariant” data type, represented by single nested row. Corresponds to Delphi ftADT field type.
	--

	dtArrayRef
	Array of values. Value is an “invariant” data type, represented by list of nested rows. Corresponds to Delphi ftArray field type.
	--

	dtParentRowRef
	AnyDAC internal data type.
	--

	dtGUID
	GUID data structure.
	See TGUID for details.

	dtObject
	Reference to IADDataStoredObject interface instance.
	IADDataStoredObject interface.

Appendix 2. Macro data types

	Data type
	Meaning
	Macro value
	Substitution

	mdString
	Literal constant
	QWE
	‘QWE’

	mdIdentifer
	Quoted identifier
	QWE
	[QWE]

	mdInteger
	Integer value
	123
	123

	mdBoolean
	Boolean value
	1
	True

	mdFloat
	Floating point numeric value
	1.23
	1,234

	mdDate
	Date value
	12-02-03
	DateValue(‘12-02-03’)

	mdTime
	Time value
	09:00
	DateValue(’09:00’)

	mdDateTime
	Date and time value
	12-02-03 09:00
	DateValue(‘12-02-03 09:00’)

	mdRaw
	Any sequence of symbols, “as is”
	QWE !@# 123
	QWE !@# 123

Appendix 3. Top level interfaces and GUID’s

	GUID
	Interface
	AnyDAC standard implementation unit

	3E9B315B-F456-4175-A864-B2573C4A2003
	IADStanObjectFactory
	daADStanPool

	3E9B315B-F456-4175-A864-B2573C4A2009
	IADStanExpressionParser
	daADStanExpr

	3E9B315B-F456-4175-A864-B2573C4A2012
	IADStanDefinitionStorage
	daADStanDef

	3E9B315B-F456-4175-A864-B2573C4A2013
	IADStanDefinition
	daADStanDef

	3E9B315B-F456-4175-A864-B2573C4A2014
	IADStanDefinitions
	daADStanDef

	3E9B315B-F456-4175-A864-B2573C4A2015
	IADStanConnectionDef
	daADStanDef

	3E9B315B-F456-4175-A864-B2573C4A2016
	IADStanConnectionDefs
	daADStanDef

	3E9B315B-F456-4175-A864-B2573C4A2023
	IADStanAsyncExecutor
	daADStanAsync

	3E9B315B-F456-4175-A864-B2573C4A2026
	IADMoniRemoteClient
	daADMoniIndyClient

	3E9B315B-F456-4175-A864-B2573C4A2027
	IADMoniFlatFileClient
	daADMoniFlatFile

	3E9B315B-F456-4175-A864-B2573C4A2101
	IADPhysManager
	daADPhysManager

	3E9B315B-F456-4175-A864-B2573C4A2200
	IADGUIxLoginDialog
	daADGUIxFormsfLogin

	3E9B315B-F456-4175-A864-B2573C4A2201
	IADGUIxWaitCursor
	daADGUIxFormsWait,
daADGUIxConsoleWait

	3E9B315B-F456-4175-A864-B2573C4A2202
	IADGUIxAsyncExecuteDialog
	daADGUIxFormsfAsync

	3E9B315B-F456-4175-A864-B2573C4A2203
	IADGUIxErrorDialog
	daADGUIxFormsfError

	3E9B315B-F456-4175-A864-B2573C4A2204
	IADGUIxDefaultLoginDialog
	daADGUIxFormsfLogin

	3E9B315B-F456-4175-A864-B2573C4A2304
	IADDAptTableAdapter
	daADDaptManager

	3E9B315B-F456-4175-A864-B2573C4A2306
	IADDAptSchemaAdapter
	daADDaptManager

Appendix 4. Connection definition parameters

[AnyDACSettings] section

This connection definition file section is common for all definitions in the same file. At most, where are parameters controlling debug monitor.

	Parameter
	Description
	Default value

	MonitorInDelphiIDE
	The monitor client, running at design time in Delphi IDE, will not produce output if False is specified.
	True

	MonitorCategories
	The monitor client will output messages only of specified categories. The value is a bit mask, where each bit corresponds to TADDebugEventKind enumeration item.
	$FFFF

	MonitorByIndy_Host
	The remote monitor client will connect to remote monitor server running on specified host.
	127.0.0.1

	MonitorByIndy_Port
	The remote monitor client will connect to remote monitor server listening on specified port.
	8050

	MonitorByIndy_Timeout
	The remote monitor client will try to connect to remote monitor server specified time.
	1000

	MonitorByFlatFile_FileName
	The file monitor client will produce output into specified file.
	AnyDAC $(RAND).TRC

	MonitorByFlatFile_Append
	The file monitor client will append output into file or rewrite a file.
	False

Appendix 5. Macro functions.

CHARACTER

	Function
	Description

	ASCII(string_exp)
	Returns the ASCII code value of the leftmost character of string_exp as an integer.

	BIT_LENGTH(string_exp)
	Returns the length in bits of the string expression.

	CHAR(code)
	Returns the character that has the ASCII code value specified by code. The value of code should be between 0 and 255; otherwise, the return value is data source–dependent.

	CHAR_LENGTH(string_exp)
	Returns the length in characters of the string expression, if the string expression is of a character data type; otherwise, returns the length in bytes of the string expression (the smallest integer not less than the number of bits divided by 8). (This function is the same as the CHARACTER_LENGTH function.)

	CHARACTER_LENGTH(string_exp)
	Returns the length in characters of the string expression, if the string expression is of a character data type; otherwise, returns the length in bytes of the string expression (the smallest integer not less than the number of bits divided by 8). (This function is the same as the CHAR_LENGTH function.)

	CONCAT(string_exp1, string_exp2)
	Returns a character string that is the result of concatenating string_exp2 to string_exp1. The resulting string is DBMS-dependent. For example, if the column represented by string_exp1 contained a NULL value, DB2 would return NULL but SQL Server would return the non-NULL string.

	DIFFERENCE(string_exp1, string_exp2)
	Returns an integer value that indicates the difference between the values returned by the SOUNDEX function for string_exp1 and string_exp2.

	INSERT(string_exp1, start, length, string_exp2)
	Returns a character string where length characters have been deleted from string_exp1, beginning at start, and where string_exp2 has been inserted into string_exp, beginning at start.

	LCASE(string_exp)
(ODBC 1.0)
	Returns a string equal to that in string_exp, with all uppercase characters converted to lowercase.

	LEFT(string_exp, count)
	Returns the leftmost count characters of string_exp.

	LENGTH(string_exp)
	Returns the number of characters in string_exp, excluding trailing blanks.

	LOCATE(string_exp1, string_exp2[, start])
	Returns the starting position of the first occurrence of string_exp1 within string_exp2. The search for the first occurrence of string_exp1 begins with the first character position in string_exp2 unless the optional argument, start, is specified. If start is specified, the search begins with the character position indicated by the value of start. The first character position in string_exp2 is indicated by the value 1. If string_exp1 is not found within string_exp2, the value 0 is returned.

	LTRIM(string_exp)
	Returns the characters of string_exp, with leading blanks removed.

	OCTET_LENGTH(string_exp)
	Returns the length in bytes of the string expression. The result is the smallest integer not less than the number of bits divided by 8.

	POSITION(character_exp, character_exp)
	Returns the position of the first character expression in the second character expression. The result is an exact numeric with an implementation-defined precision and a scale of 0.

	REPEAT(string_exp, count)
	Returns a character string composed of string_exp repeated count times.

	REPLACE(string_exp1, string_exp2, string_exp3)
	Search string_exp1 for occurrences of string_exp2, and replace with string_exp3.

	RIGHT(string_exp, count)
	Returns the rightmost count characters of string_exp.

	RTRIM(string_exp)
	Returns the characters of string_exp with trailing blanks removed.

	SOUNDEX(string_exp)
	Returns a data source–dependent character string representing the sound of the words in string_exp. For example, SQL Server returns a 4-digit SOUNDEX code; Oracle returns a phonetic representation of each word.

	SPACE(count)
	Returns a character string consisting of count spaces.

	SUBSTRING(string_exp, start, length)
	Returns a character string that is derived from string_exp, beginning at the character position specified by start for length characters.

	UCASE(string_exp)
	Returns a string equal to that in string_exp, with all lowercase characters converted to uppercase.

NUMERIC

	Function
	Description

	ABS(numeric_exp)
	Returns the absolute value of numeric_exp.

	ACOS(float_exp)
	Returns the arccosine of float_exp as an angle, expressed in radians.

	ASIN(float_exp)
	Returns the arcsine of float_exp as an angle, expressed in radians.

	ATAN(float_exp)
	Returns the arctangent of float_exp as an angle, expressed in radians.

	ATAN2(float_exp1, float_exp2)
	Returns the arctangent of the x and y coordinates, specified by float_exp1 and float_exp2, respectively, as an angle, expressed in radians.

	CEILING(numeric_exp)
	Returns the smallest integer greater than or equal to numeric_exp. The return value is of the same data type as the input parameter.

	COS(float_exp)
	Returns the cosine of float_exp, where float_exp is an angle expressed in radians.

	COT(float_exp)
	Returns the cotangent of float_exp, where float_exp is an angle expressed in radians.

	DEGREES(numeric_exp)
	Returns the number of degrees converted from numeric_exp radians.

	EXP(float_exp)
	Returns the exponential value of float_exp.

	FLOOR(numeric_exp)
	Returns the largest integer less than or equal to numeric_exp. The return value is of the same data type as the input parameter.

	LOG(float_exp)
	Returns the natural logarithm of float_exp.

	LOG10(float_exp)
	Returns the base 10 logarithm of float_exp.

	MOD(integer_exp1, integer_exp2)
	Returns the remainder (modulus) of integer_exp1 divided by integer_exp2.

	PI()
	Returns the constant value of pi as a floating-point value.

	POWER(numeric_exp, integer_exp)
	Returns the value of numeric_exp to the power of integer_exp.

	RADIANS(numeric_exp)
	Returns the number of radians converted from numeric_exp degrees.

	RAND([integer_exp])
	Returns a random floating-point value using integer_exp as the optional seed value.

	ROUND(numeric_exp, integer_exp)
	Returns numeric_exp rounded to integer_exp places right of the decimal point. If integer_exp is negative, numeric_exp is rounded to |integer_exp| places to the left of the decimal point.

	SIGN(numeric_exp)
	Returns an indicator of the sign of numeric_exp. If numeric_exp is less than zero, –1 is returned. If numeric_exp equals zero, 0 is returned. If numeric_exp is greater than zero, 1 is returned.

	SIN(float_exp)
	Returns the sine of float_exp, where float_exp is an angle expressed in radians.

	SQRT(float_exp)
	Returns the square root of float_exp.

	TAN(float_exp)
	Returns the tangent of float_exp, where float_exp is an angle expressed in radians.

	TRUNCATE(numeric_exp, integer_exp)
	Returns numeric_exp truncated to integer_exp places right of the decimal point. If integer_exp is negative, numeric_exp is truncated to |integer_exp| places to the left of the decimal point.

TIME, DATE

	Function
	Description

	CURRENT_DATE()
	Returns the current date.

	CURRENT_TIME[(time-precision)]
	Returns the current local time. The time-precision argument determines the seconds precision of the returned value.

	CURRENT_TIMESTAMP
[(timestamp-precision)]
	Returns the current local date and local time as a timestamp value. The timestamp-precision argument determines the seconds precision of the returned timestamp.

	CURDATE()
	Returns the current date.

	CURTIME()
	Returns the current local time.

	DAYNAME(date_exp)
	Returns a character string containing the data source–specific name of the day (for example, Sunday through Saturday or Sun. through Sat. for a data source that uses English, or Sonntag through Samstag for a data source that uses German) for the day portion of date_exp.

	DAYOFMONTH(date_exp)
	Returns the day of the month based on the month field in date_exp as an integer value in the range of 1–31.

	DAYOFWEEK(date_exp)
	Returns the day of the week based on the week field in date_exp as an integer value in the range of 1–7, where 1 represents Sunday.

	DAYOFYEAR(date_exp)
	Returns the day of the year based on the year field in date_exp as an integer value in the range of 1–366.

	EXTRACT(extract-field, extract-source)
	Returns the extract-field portion of the extract-source. The extract-source argument is a datetime or interval expression. The extract-field argument can be one of the following keywords:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND

The precision of the returned value is implementation-defined. The scale is 0 unless SECOND is specified, in which case the scale is not less than the fractional seconds precision of the extract-source field.

	HOUR(time_exp)
	Returns the hour based on the hour field in time_exp as an integer value in the range of 0–23.

	MINUTE(time_exp)
	Returns the minute based on the minute field in time_exp as an integer value in the range of 0–59.

	MONTH(date_exp)
	Returns the month based on the month field in date_exp as an integer value in the range of 1–12.

	MONTHNAME(date_exp)
	Returns a character string containing the data source–specific name of the month (for example, January through December or Jan. through Dec. for a data source that uses English, or Januar through Dezember for a data source that uses German) for the month portion of date_exp.

	NOW()
	Returns current date and time as a timestamp value.

	QUARTER(date_exp)
	Returns the quarter in date_exp as an integer value in the range of 1–4, where 1 represents January 1 through March 31.

	SECOND(time_exp)
	Returns the second based on the second field in time_exp as an integer value in the range of 0–59.

	TIMESTAMPADD(interval, integer_exp, timestamp_exp)

	Returns the timestamp calculated by adding integer_exp intervals of type interval to timestamp_exp. Valid values of interval are the following keywords:

FRAC_SECOND
SECOND
MINUTE
HOUR
DAY
WEEK
MONTH
QUARTER
YEAR

where fractional seconds are expressed in billionths of a second. For example, the following SQL statement returns the name of each employee and his or her one-year anniversary date:

SELECT NAME, {fn TIMESTAMPADD(‘YEAR’, 1, HIRE_DATE)} FROM
EMPLOYEES

If timestamp_exp is a time value and interval specifies days, weeks, months, quarters, or years, the date portion of timestamp_exp is set to the current date before calculating the resulting timestamp.

If timestamp_exp is a date value and interval specifies fractional seconds, seconds, minutes, or hours, the time portion of timestamp_exp is set to 0 before calculating the resulting timestamp.

	TIMESTAMPDIFF(interval, timestamp_exp1, timestamp_exp2)
	Returns the integer number of intervals of type interval by which timestamp_exp2 is greater than timestamp_exp1. Valid values of interval are the following keywords:

FRAC_SECOND
SECOND
MINUTE
HOUR
DAY
WEEK
MONTH
QUARTER
YEAR

where fractional seconds are expressed in billionths of a second. For example, the following SQL statement returns the name of each employee and the number of years he or she has been employed:

SELECT NAME, {fn TIMESTAMPDIFF(‘YEAR’, {fn CURDATE()}, HIRE_DATE)} FROM EMPLOYEES

If either timestamp expression is a time value and interval specifies days, weeks, months, quarters, or years, the date portion of that timestamp is set to the current date before calculating the difference between the timestamps.

If either timestamp expression is a date value and interval specifies fractional seconds, seconds, minutes, or hours, the time portion of that timestamp is set to 0 before calculating the difference between the timestamps.

	WEEK(date_exp)
	Returns the week of the year based on the week field in date_exp as an integer value in the range of 1–53.

	YEAR(date_exp)
	Returns the year based on the year field in date_exp as an integer value. The range is data source–dependent.

SYSTEM

	Function
	Description

	DATABASE()
	Returns the name of the database corresponding to the connection.

	IFNULL(exp, value)
	If exp is null, value is returned. If exp is not null, exp is returned. The possible data type or types of value must be compatible with the data type of exp.

	USER()
	Returns the user name in the DBMS. This can be different than the login name.

CONVERT

The format of the CONVERT function is:

CONVERT(value_exp, data_type)

The function returns the value specified by value_exp converted to the specified data_type, where data_type is one of the following keywords:

	BIGINT
	REAL

	BINARY
	SMALLINT

	BIT
	DATE

	CHAR
	TIME

	DECIMAL
	TIMESTAMP

	DOUBLE
	TINYINT

	FLOAT
	VARBINARY

	GUID
	VARCHAR

	INTEGER
	WCHAR

	LONGVARBINARY
	WLONGVARCHAR

	LONGVARCHAR
	WVARCHAR

	NUMERIC
	

The syntax for the explicit data type conversion function does not support specification of conversion format. The argument value_exp can be a column name, the result of another scalar function, or a numeric or string literal. For example:

{ fn CONVERT({ fn CURDATE() }, CHAR) }

converts the output of the CURDATE scalar function to a character string. Because AnyDAC does not mandate a data type for return values from scalar functions (because the functions are often data source–specific), applications should use the CONVERT scalar function whenever possible to force data type conversion. The following two examples illustrate the use of the CONVERT function. These examples assume the existence of a table called EMPLOYEES, with an EMPNO column of type SQL_SMALLINT and an EMPNAME column of type SQL_CHAR. If an application specifies the following SQL statement:

SELECT EMPNO FROM EMPLOYEES WHERE {fn CONVERT(EMPNO,CHAR)} LIKE '1%'

· A driver for ORACLE translates the SQL statement to:

SELECT EMPNO FROM EMPLOYEES WHERE to_char(EMPNO) LIKE '1%'

· A driver for SQL Server translates the SQL statement to:

SELECT EMPNO FROM EMPLOYEES WHERE convert(char,EMPNO) LIKE '1%'

If an application specifies the following SQL statement:

SELECT {fn ABS(EMPNO)}, {fn CONVERT(EMPNAME,SMALLINT)}

 FROM EMPLOYEES WHERE EMPNO <> 0

· A driver for ORACLE translates the SQL statement to:

SELECT abs(EMPNO), to_number(EMPNAME) FROM EMPLOYEES WHERE EMPNO <> 0

· A driver for SQL Server translates the SQL statement to:

SELECT abs(EMPNO), convert(smallint, EMPNAME) FROM EMPLOYEES

 WHERE EMPNO <> 0

	Architecture Guide - Page 5 of 85
	© 1999-2005, Dmitry Arefiev

[image: image18.jpg][image: image19.jpg]_1175435860.unknown

_1175546365.unknown

_1175699785.unknown

_1175546362.unknown

_1175546364.unknown

_1175435861.unknown

_1175435852.unknown

_1175435856.unknown

_1175435859.unknown

_1175435855.unknown

_1175435849.unknown

_1175435851.unknown

_1175435846.unknown

_1175435847.unknown

_1175435845.unknown

