
BUILDER

Volume 3, Number 8 • August 1999
www.reisdorph.com

$7.00

++++

Developer’s Journal
Tips & techniques for Borland C++Builder

IN THIS ISSUE

7
RAS Update for
C++Builder 4

8
Verifying data
using CRC

13
Registering
AnsiString
property editors

16
Determining
compiler versions

Hosting forms in a main form
by Kent Reisdorph

Figure A: A main form hosting a secondary form in the client area.

Almost every serious C++Builder
application ha secondary forms in
addition to the main form. Some-

times these forms are presented to the
user as dialogs and other times as mode-
less windows. The VCL model makes cre-
ating and displaying secondary forms
easy.

The problem with this ease of use is
that sometimes C++Builder program-
mers have trouble thinking outside the
box. Not all applications can benefit from
the modeless window model. Some ap-
plications need to display various views
within the main form. This article ex-
plains how to host a secondary form
within your main form. The secondary
form will appear to be part of the main
form and the user won’t even know that
a second form is being shown. Figure A
shows a main form with a second form in
the client area.

Understanding the
parent/child relationship
The basic idea of this type of application
is to make all secondary forms children of
the main form. This design is common in
other frameworks (such as OWL or
MFC), but is not something that you see
often in a VCL application. The VCL
doesn’t allow you to simply set a proper-
ty in order to make one form the child of
another. You must do a little work in
order to make this happen.

To have one form host another, you
must tell Microsoft Windows that the

secondary form is a child of the main
form. In C++Builder programming
we tend to think of forms as windows
and components as child objects. The
truth is, though, that from Windows’
perspective all forms and components
are simply windows. You can specify
that any window (a form or a compo-
nent) be the child of another window.
You only need to step out of the VCL
box for a moment.

A better mousetrap
One of the advantages to hosting
child forms within the main form is

C++Builder Developer’s Journal2

that you can design your child form just
as you would any other secondary form.
That is, you create a new form, add com-
ponents to it, and write the code for the
form. This makes it easy to design the
child form, and to keep all the code that
drives the child form in one central place.

The example program’s design
Before I go on, I want to give you some
background on the example program for
this article. The example, called PARENT-
ING, contains a main form that has a tool-
bar at the top and a status bar at the
bottom. In addition to the main form, the
program has two child forms. One child
form, called TTableForm, displays the ANI-
MALS.DBF table in a grid. The ANIMALS
table is one of the sample database tables
that ships with C++Builder. A second
child form, TChartForm displays the ANI-
MALS table in a TChart. (My apologies to
those of you who are using C++Builder
4 Standard as it does not ship with the
database components.)

You can choose to view either the table
or the chart form by selecting an item
from the main menu, or by clicking on
one of the toolbar buttons. When you se-
lect a form to display, the active form, if
any, will be destroyed and the selected
form displayed. The child form will be
displayed in the client area of the main
form below the toolbar and above the sta-
tus bar. In addition, the child form is re-
sized to always fill the client area of the
main form if the main form is resized.

Overriding CreateParams()
As I have said, in order for the main form
to host a secondary form you need to set
the main form as the secondary form’s
parent. This is done by overriding the
VCL’s CreateParams() method.
CreateParams() is called when the VCL
creates the underlying window associat-
ed with a form. The declaration for
CreateParams() looks like this:

void __fastcall

CreateParams(TCreateParams& Params);

As you can see, CreateParams() has a refer-
ence to a TCreateParams structure as its
only parameter. TCreateParams is defined
in the VCL as follows:

struct TCreateParams

{

char *Caption;

unsigned Style;

unsigned ExStyle;

int X;

int Y;

int Width;

int Height;

HWND WndParent;

void *Param;

tagWNDCLASSA WindowClass;

char WinClassName[64];

};

This structure contains all the information
that Windows needs to create a window.
(If you have done Windows program-
ming using the API, you will recognize
that the members of the TCreateParams
structure map to a Windows CREATESTRUCT
structure.) When you override
CreateParams() you first call the base class’s
CreateParams() method. After that, you can
modify the individual members of the
TCreateParams structure. Here’s how a
basic overridden CreateParams() method
might look:

void __fastcall TChartForm::CreateParams(

TCreateParams& Params)

{

TForm::CreateParams(Params);

Params.Style =

WS_CHILD | WS_CLIPSIBLINGS;

Params.WndParent = MainForm->Handle;

Params.X = 0;

Params.Y = 0;

Params.Width =

MainForm->ClientRect.Right;

Params.Height =

MainForm->ClientRect.Bottom;

}

The key points in this code are the lines
that set the Style and WndParent members
of the TCreateParams structure. Style is set
to a value that includes the WS_CHILD and
WS_CLIPSIBLINGS window styles. WS_CHILD
specifies that this window is the child of
another window. By definition, a child
window has no title bar. At design time
the child form will have a title bar, but the
title bar will be removed when Windows
creates the form at runtime. The
WS_CLIPSIBLINGS style insures that the vari-
ous child windows on the main form

August 1999 3www.reisdorph.com

don’t interfere with one another when
the form is painted.

Obviously, a child window must have
a parent. You specify the parent by as-
signing the window handle of the parent
window to the TCreateParams structure’s
WndParent member. As you can see from
the preceding code, the WndParent mem-
ber is set to the Handle property of the
main form. Assigning the parent is rela-
tively straightforward, so I won’t go into
further detail on the subject.

Setting the child form’s properties
In addition to the code you see in the
CreateParams() method, you must also set
some of the child form’s properties. Most
of the form’s properties can be left at
their default values. You should, howev-
er, set the AutoScroll property to false.
This assumes, of course, that your form is
designed in such a way that scrolling the
form will not be necessary. You should
also set the Position property to poDefault,
since the size and position of the child
window will be set in the CreateParams()
method. The Caption and BorderIcons
properties will be ignored so you
shouldn’t have to worry about them. Be
sure to leave the BorderStyle property set
to bsSizeable, and the BorderWidth proper-
ty set to 0. If you change these properties,
the child form won’t fit properly on the
main form.

Other components on the form
In many cases, your main form will con-
tain components besides the secondary
form. For example, your main form may
have a toolbar and a status bar. In that
case, you need to account for the toolbar
and status bar when you set the X, Y,
Width, and Height members of the
TCreateParams structure. The child form
must fit between the toolbar at the top of
the form, and the status bar at the bottom
of the form.

Given that, the code that sets the vari-
ous members of the TCreateParams struc-
ture might look like this:

Params.X = 0;

Params.Y = MainForm->ToolBar->Height + 1;

Params.Width = MainForm->ClientRect.Right;

Params.Height =

(MainForm->StatusBar->Top-1) - Params.Y;

Note that the Y member is set to the bot-
tom of the toolbar, plus one pixel. The
width of the child form is set to the width
of the main form’s client area, and the
height of the child form is calculated
based on the top of the child window and
the top of the status bar. Basically, the
height is set to that part of the main
form’s client area that falls between the
bottom of the toolbar and the top of the
status bar.

That is all that is required to make a
secondary form the child of the main
form. There are a few other features you
may want to implement in the child
form, but I’ll save discussion of those fea-
tures for later.

Setting up the main form
The main form also needs to be set up to
handle a secondary form hosted as a
child. First, you must remove the child
forms from the application’s auto-create
list. You will be creating the child forms
when needed and don’t want them auto-
created. In fact, if you don’t remove the
child forms from the auto-create list they
will automatically display when the ap-
plication starts.

You’ll need a variable that keeps track
of which child form is currently active. I
declared the variable in the main form’s
public section as follows:

TForm* ActiveChild;

The ActiveChild variable is public because
the child forms need access to the vari-
able. I’ll show you how this variable is
used in just a bit.

Now you can write the code that will
display the child form. First, look at the
code, and then I’ll explain it.

void __fastcall

TMainForm::Chart1Click(TObject *Sender)

{

if (ActiveChild)

delete ActiveChild;

TChartForm* form = new TChartForm(this);

ActiveChild = form;

form->Show();

Chart1->Checked = true;

Table1->Checked = false;

}

C++Builder Developer’s Journal4

This method is the OnClick handler for a
menu item on the main form. As you
might guess, the handler displays the
TChartForm child. I first check to see if the
ActiveChild variable is non-zero.
ActiveChild will be non-zero if a child
window is active. If ActiveChild is not
zero, I delete the pointer associated with
the variable to destroy the active child
form. If I don’t first destroy the active
child form, my program will continue to
stack child after child on top of one an-
other.

Next, I create an instance of the
TChartForm class. I then assign the pointer
returned from operator new to the
ActiveChild variable. This way, the
ActiveChild variable always contains a
pointer to the current child form. Finally,
I call the Show() method to display the
child form. The last two lines of code in-
sure that the menu displays a check mark
next to the menu item representing either
the table or chart view.

In order to complete the discussion of
the ActiveChild variable, I have to take
you back to the child form unit for a mo-
ment. Each of the child forms contains an
event handler for the OnClose event that
looks like this:

void __fastcall TChartForm::FormClose(

TObject *Sender, TCloseAction &Action)

{

MainForm->ActiveChild = 0;

MainForm->Chart1->Checked = false;

Action = caFree;

}

Note that when the form is destroyed,
the main form’s ActiveChild variable is set
to 0. I also uncheck the menu item associ-
ated with the child form, and set the
Action parameter to caFree. Setting Action
to caFree tells the VCL to free the memory
associated with the form.

You might be wondering why the
FormClose handler contains those last two
lines of code. After all, I just showed you
code in the main form that performs
these same actions. The answer is that
each of the child forms contains a button
called Close that can, naturally, be used
to close the form. If the form is closed
using the Close button, then the memory
needs to be freed and the menu item
unchecked.

A few extra features
There is at least one feature of the exam-
ple program that I haven’t discussed yet.
That is, if the child form is larger than the
current client area of the main form, the
main form is resized to accommodate the
child. That code is placed in the child
form’s CreateParams() method. Earlier, I
showed you an example of a basic
CreateParams() method. I left out the code
that resizes the main form because I did-
n’t want to introduce more complex code
at that time. You can find the completed
CreateParams() method for the TChartForm
class in Listing B. The method only dif-
fers from that shown earlier in that it con-
tains this code:

if (Width > MainForm->ClientWidth)

MainForm->ClientWidth = Width;

if (Height > (MainForm->StatusBar->Top -

MainForm->ToolBar->Height))

MainForm->ClientHeight = Height +

MainForm->ToolBar->Height +

MainForm->StatusBar->Height;

This code checks to see if the child form’s
width is greater than main form’s
ClientWidth property. If it is, then the main
form’s ClientWidth property is set to the
width of the child form. The next few
lines, although a bit more complex, do
the same thing for the main form’s client
height.

The result of this code is that the main
form will always be resized to accommo-
date the child form being displayed.

The example program also accounts
for the main form being resized. If the
main form is resized, the child form must
also be resized so that it continues to fill
the client area of the main form. The fol-
lowing code shows the OnResize event
handler for the main form.

void __fastcall

TMainForm::FormResize(TObject *Sender)

{

if (ActiveChild) {

ActiveChild->Width = ClientRect.Right;

ActiveChild->Height =

(MainForm->StatusBar->Top - 1) -

ActiveChild->Top;

}

}

August 1999 5www.reisdorph.com

This code is fairly straightforward, so I
don’t need to go over every line. Note,
though, that I first check the value of the
ActiveChild variable to be sure that it is
non-zero (that is, that it points to a child
form). Obviously I don’t need to do any-
thing in the OnResize event handler if no
child form is currently active. The re-
maining code is a variation of the code
you saw in the child form’s CreateParams()
method. It simply calculates the new size
for the child window and sets the Width
and Height properties accordingly.

Conclusion
Listing A contains the source code for
the example program’s main form.

Listing B shows the source code for the
TChartForm unit. I don’t show the headers
for these units because they don’t contain
any meaningful code. I also don’t show
the code for the TTableForm unit because it
is identical to the code for the TChartForm
unit. You can download the example pro-
gram from our Web site at
www.reisdorph.com.

Hosting child windows within the
main form provides a clean alternative to
using MDI, and also to an application that
would otherwise display data to the user
as modeless forms. Using child forms al-
lows you to design your secondary win-
dows using the form designer, and also
helps you keep the code that drives the
child form in one place. u

#include <vcl.h>

#pragma hdrstop

#include “MainU.h”

#include “ChartU.h”

#include “TableU.h”

#pragma resource “*.dfm”

TMainForm *MainForm;

__fastcall TMainForm::TMainForm(TComponent* Owner)

: TForm(Owner)

{

// Zero out the ActiveChild variable or it

// will contain random data.

ActiveChild = 0;

// Open the main form’s Table component.

Table->Active = true;

}

void __fastcall TMainForm::Table1Click(TObject

*Sender)

{

// If this form is already being displayed

// then return without doing anything.

if (Table1->Checked)

return;

// Delete the active child if it exists.

if (ActiveChild) {

delete ActiveChild;

ActiveChild = 0;

}

// Create an instance of TTableForm.

TTableForm* form = new TTableForm(this);

// Assign the DBGrid::DataSource property of the

// TTableForm’s DBGrid to the datasource

// on the main form.

form->DBGrid->DataSource = DataSource;

// Keep track of the active child.

ActiveChild = form;

// Show the form.

form->Show();

// Update the check marks on the View menu.

Table1->Checked = true;

Chart1->Checked = false;

}

void __fastcall TMainForm::Chart1Click(TObject

*Sender)

{

// Essentially the same code as described

// for the Table1Click method above.

if (Chart1->Checked)

return;

if (ActiveChild)

delete ActiveChild;

TChartForm* form = new TChartForm(this);

ActiveChild = form;

form->Show();

Chart1->Checked = true;

Table1->Checked = false;

}

void __fastcall

TMainForm::FormResize(TObject *Sender)

{

// If the main form is resized, resize the

// active child to fill the client area of

// the main form.

Listing A: MAINU.CPP

C++Builder Developer’s Journal6

if (ActiveChild) {

ActiveChild->Width = ClientRect.Right;

ActiveChild->Height =

(MainForm->StatusBar->Top - 1) -

ActiveChild->Top;

}

}

Listing B: CHARTU.CPP

#include <vcl.h>

#pragma hdrstop

#include “ChartU.h”

#include “MainU.h”

#pragma resource “*.dfm”

TChartForm *ChartForm;

__fastcall

TChartForm::TChartForm(TComponent* Owner)

: TForm(Owner)

{

}

void __fastcall

TChartForm::CreateParams(TCreateParams& Params)

{

// Call the base class CreateParams method.

TForm::CreateParams(Params);

// Set the style to create a child window.

Params.Style = WS_CHILD | WS_CLIPSIBLINGS;

// Set the window’s parent as the main form.

Params.WndParent = MainForm->Handle;

// The X position of the window is 0.

Params.X = 0;

// If the main form is too narrow or too short

// to accomodate the child form, resize it.

if (Width > MainForm->ClientWidth)

MainForm->ClientWidth = Width;

if (Height > (MainForm->StatusBar->Top -

MainForm->ToolBar->Height))

MainForm->ClientHeight = Height +

MainForm->ToolBar->Height +

MainForm->StatusBar->Height;

// The Y position of the child form is just

// below the main form’s toolbar.

Params.Y = MainForm->ToolBar->Height + 1;

// The width of the child form is the same as

// the main form’s client width.

Params.Width = MainForm->ClientRect.Right;

// Calculate a height based on the bottom of

// the toolbar, and the top of the status bar.

Params.Height =

(MainForm->StatusBar->Top - 1) - Params.Y;

}

void __fastcall TChartForm::FormClose(

TObject *Sender, TCloseAction &Action)

{

// Update the main form’s ActiveChild property

// to indicate no child is active.

MainForm->ActiveChild = 0;

// The child form might have been closed via

// the Close button so update the main menu’s

// check marks, and tell the VLC to clean up

// the memory for this form.

MainForm->Chart1->Checked = false;

Action = caFree;

}

void __fastcall

TChartForm::CloseBtnClick(TObject *Sender)

{

Close();

}

August 1999 7www.reisdorph.com

In our March and April issues we pre-
sented articles on using Microsoft’s
Remote Access Services (RAS) to es-

tablish dial-up connections. Those articles
were written using C++Builder 3. With
C++Builder 4, however, I noticed that
my RAS applications no longer worked as
I expected. One of the symptoms was a
runtime error from some of the RAS
functions. The return value from those
functions was ERROR_BUFFER_TOO_SMALL. The
textual description of this error is, “The
caller’s buffer is too small.” I spent more
than a few hours trying to track down
this problem. I started digging around in
RAS.H and found some entries like this:

RASCONNA

{

DWORD dwSize;

HRASCONN hrasconn;

CHAR szEntryName[RAS_MaxEntryName + 1];

#if (WINVER >= 0x400)

CHAR szDeviceType[RAS_MaxDeviceType + 1];

CHAR szDeviceName[RAS_MaxDeviceName + 1];

#endif

#if (WINVER >= 0x401)

CHAR szPhonebook [MAX_PATH];

DWORD dwSubEntry;

#endif

};

Hmm… that could certainly lead to a
“buffer too small error” if the WINVER
macro were defined as something other
than 0x0400. Curious, I started hunting in
the Windows headers. Here’s what I
found in WINDEF.H:

#ifndef WINVER

#define WINVER 0x0500

#endif /* WINVER */

Aha! Presumably Microsoft and Borland
were building support for Windows 2000
(which includes many enhancements to
RAS) into the Windows headers and
those headers shipped with C++Builder
4. In C++Builder 3, WINVER was defined as
0x0400 so obviously something changed.

Once I figured out the problem, it did
not take long to fix it. If you are building

applications that use RAS in C++Builder
4 you must use this construct when in-
cluding the RAS headers:

#pragma warn -dup

#define WINVER 0x400

#include <ras.h>

#include <raserror.h>

#define WINVER 0x500

This code temporarily redefines the
WINVER macro to 0x400 and then sets it back
to 0x500 after including the RAS headers.
The line that reads, #pragma warn -dup sup-
presses the warning the compiler will
issue that says:

Redefinition of ‘WINVER’ is not identical.

It’s not only RAS.H that suffers from this
problem. For a list of affected headers,
search the Windows headers for these
lines of text:

WINVER >= 0x401

WINVER >= 0x0500

WINVER >= 0x500

You will no doubt find several places
where problems may arise with your ex-
isting code.

As I have said, this problem caused me
a few hours of aggravation before I fig-
ured out what was going wrong. I hope
that this information will help you avoid
the frustration I experienced before I dis-
covered the solution. u

Have you moved?
Are you going to?
Send any change of address to:

E-mail:
customer_relations@reisdorph.com

Mail:
Reisdorph Publishing
P.O. Box 50213
Colorado Springs, CO 80919

RAS update
by Kent Reisdorph

C++Builder Developer’s Journal8

Whenever a data message is
transmitted it can be corrupted
in ways that cannot be predict-

ed. Even data sitting on a disk can be cor-
rupted by hardware failures, software
bugs, or malicious activity.

A key requirement of networking sys-
tems and file transfer programs is to en-
sure that data gets transferred reliably.
When a message is received, the amount
of data and contents must match what
was transmitted exactly. If a message is
modified during transmission, the system
asks the sender to retransmit the corrupt-
ed message.

Simple Error Detection
The first problem in handling data cor-
ruption is how to determine if the data
has been modified. An early method used
in serial communications was to check
the parity of the data bytes. Since ASCII
characters only require 7-bits, one bit is
left over in each byte and that bit can be
used to ensure that each byte has either
odd or even parity. In other words, the
sender would set or clear the last bit to
ensure that each data byte either had ei-
ther an odd or even number of bits set,
depending upon what the receiver was
expecting.

The problem with this system is that it
only works reliably with errors of one bit.
If more than one bit gets corrupted, there
is only a 50/50 chance of detecting errors.

Checksum
Another simple method for error detec-
tion is to include a checksum value with-
in each message. The sender calculates
the checksum for the data before it is
transmitted. The receiver also calculates
the checksum on the data and, if the
checksum values do not match, the re-
ceiver knows that the data has been cor-
rupted in some way.

A simple checksum function is to take
the sum of each byte in the message. Take
a message consisting of the characters
“ABCDEF”, for example. Before transmit-
ting the message, an application can sum

Verifying data using CRC
by John M. Miano

each byte and append the result (495) to
the message.

While summing the data bytes allows
errors to be detected in some situations, it
is possible for many types of errors to slip
by. For example, a message consisting of
the characters “ACBDEF” differs from the
previous string by only two bits, but the
sum of the data bytes is the same. The
data is obviously incorrect but a check-
sum won’t catch the error.

A Better Check Value
What is really needed for reliable error
detection is a function that causes small
changes in the input to produce large
changes in the check value. In other
words, we need a function that essential-
ly produces a random value from a data
block.

The most common method for gener-
ating a check value is known as the Cyclic
Redundancy Check, or CRC. A CRC
function can be used to calculate the CRC
on a block of data. The CRC function
works by treating a data block as a large
binary number and dividing by a con-
stant value. The CRC result is the division
remainder.

In reality, the process of generating a
CRC is not true division, but rather some-
thing that looks a lot like division. CRC
calculations use binary arithmetic with no
carries or borrows. Bit positions are XORed
rather than subtracted.

Figure A show the process for generat-
ing the CRC value for the message “AB”
(0100 0001 0100 0010 in binary) using the
divisor 1 10001. Notice in Figure A how
XOR operations are used in place of sub-
traction as in real division. Also notice
that the number of bits in the CRC value
is one less than the number of bits in the
divisor.

Implementing the CRC
CRC is simple to implement in hardware
but if the CRC were implemented in soft-
ware by performing bit-by-bit pseudo-
long division, it would be relatively
computationally intensive. Fortunately

Note: The code in
this article is for use
with C++Builder 3.
You can download
the code for
C++Builder 4 from
our web site.

August 1999 9www.reisdorph.com

long division is not required in a software
implementation.

If you look at the individual XOR opera-
tions in Figure A you can see that at each
step the one data bit is shifted into the re-
mainder and XORed. The individual steps
are trivial.

Software CRC implementations are in-
variably implemented with a lookup
table, allowing byte-by-byte processing
rather than by bit. The application main-
tains a register containing the CRC value
and updates it as each byte is processed.

The following code fragment shows
how the CRC is calculated for a buffer
from a lookup table. BITCOUNT is the size of
the CRC value in bits. I will explain how
the lookup table is generated later.

for (unsigned int ii=0;ii<length;++ ii)

{

int index = ((crc_register

>> (BITCOUNT - 8)) ^ buffer[ii]);

crc_register = crc_table

[index & 0xFF] ^ (crc_register << 8);

}

The CRC Polynomial
In Figure A I made an arbitrary choice for
the divisor in the CRC calculation. There
are a number of CRC variants in use and
one of the ways in which they vary is in
the choice of the divisor. The choice of
non-zero bits in the divisor determines
the types of errors the CRC variant can
detect.

Descriptions of the CRC frequently de-
scribe it in terms of polynomial division.
Instead of representing the CRC divisor
as 1 1000 0000 0000 0101 it is represented
as x16 + x15 + x2 + 1. This is the reason
you will usually see the divisor referred
to as the CRC polynomial.

Since the highest order bit is always 1,
when the polynomial is shown in hexa-
decimal the highest order bit is invariably
left out. For example, the CRC polynomi-
al shown above would be listed as the
2-byte value 0x8005 rather than 0x18005.

Most CRC functions produce either 16
or 32-bit values (17 or 33-bit polynomials).
There are some 12-bit CRC functions, but
these are not very common. The number
of bits in the divisor limits the size of the
block that can reliably detect errors. Divi-
sors with more bits can reliably detect er-
rors in larger data blocks.

Other CRC Variations
Besides the polynomial length and poly-
nomial value, there are three other com-
mon variations among CRC functions.

Reversed CRC
From an implementation point of view,
the most significant difference among
CRC variants is the ordering of the bits in
the data block. When performing divi-
sion, start with the most significant bit
and work to the least significant.

However, when data is transmitted,
such as over a serial line, the least signifi-
cant bit within a byte often comes first in
the data stream. In a hardware imple-
mentation, it is easier to process the bits
as they arrive.

As a result, there are CRC variants that
process data bits both in the natural order
and reversed. Since the CRC uses some-
thing that looks like division, but is not
actually division, the order in which the
bits are processed is irrelevant (as long as
they are processed consistently in the
same order).

This example shows the process for
using a table lookup to calculate a re-
versed CRC. The two versions are almost
identical except for way the CRC register
is shifted.

Figure A: The CRC value for the string “AB” using
the divisor 1 10001.

C++Builder Developer’s Journal10

for (unsigned int ii=0;ii < length; ++ii)

{

crc_register = crc_table.values[

(crc_register ^ buffer [ii]) & 0xFF]

^ (crc_register >> 8);

}

Initialization
Refer back to the CRC process shown in
Figure A. Suppose the message were cor-
rupted with zero bits inserted at the start
of the message. Since zero divided by the
polynomial is zero, these extra bits do not
change the CRC value. In order to detect
this type of error, some CRC variants ini-
tialize the CRC register to a value other
than zero.

Final Value
Some CRC variants modify the remain-
der value as well by taking the comple-
ment of the value (XOR with –1). The CRC
variants that modify the remainder in-
variably initialize the CRC to a value
other than 0. The converse is not true,
however.

Classifying CRC Variants
In the previous sections I have identified
the five ways common CRC variants dif-
fer: polynomial length, polynomial value,
reversed or forward, initialization, and fi-
nalization. Table A shows how the major
CRC variants fit into these classifications.

Creating a generic CRC
implementation
C++ templates provide a good mecha-
nism for dealing with parameterized vari-
ants, such as the ones shown in Table A.
Here we have a template class whose pa-
rameters are modeled on Table A.

template <

unsigned int BITCOUNT,

unsigned long POLYNOMIAL,

bool REVERSE,

unsigned long INITIAL,

unsigned long FINALMASK>

class Crc {

public:

Crc();

Crc(const Crc &);

~Crc() {}

Crc &operator=(const Crc &);

unsigned long value() const;

void reset();

void update(const char *buffer,

unsigned int length);

private:

struct CrcTable {

enum { MAXBYTEVALUES = 256 };

CrcTable();

unsigned long values [MAXBYTEVALUES];

};

static const CrcTable crc_table;

unsigned long crc_register;

};

Creating the Lookup Table
The following function creates the value
for an entry in a lookup table for the for-
ward CRC process. You can see that this
function divides the input value using
the process shown in Figure A. Here is
the function:

unsigned int ForwardTableEntry(

unsigned long polynomial,

unsigned int entryindex,

unsigned int bitcount)

{

unsigned long result =

entryindex << (bitcount - 8);

for (unsigned int ii=0;

ii<BITSPERBYTE; ++ii) {

if ((result & bits [bitcount-1]) == 0)

Table A: CRC Variants
Name Polynomial Polynomial 1 Reserved Initialization Final XOR

Length

CRC-16 16 0x8005 Yes 0 0

X.25 16 0x1021 Yes -1 -1

CCITT 16 0x1021 No -1 0

XMODEM 16 0x1021 No 0 0

CRC-32 32 0x04D11DB7 Yes -1 -1

August 1999 11www.reisdorph.com

result <<= 1;

else

result = (result << 1) ^ polynomial;

}

unsigned long mask =

((1UL << (bitcount - 1)) - 1UL) |

(1UL << (bitcount - 1));

result &= mask;

return result;

}

Entries for reversed CRC lookup tables
are created in a similar manner, except
with bit reversals.

const unsigned long bits [32] = {

0x00000001UL, 0x00000002UL, 0x00000004UL,

0x00000008UL, 0x00000010UL, 0x00000020UL,

0x00000040UL, 0x00000080UL, 0x00000100UL,

0x00000200UL, 0x00000400UL, 0x00000800UL,

0x00001000UL, 0x00002000UL, 0x00004000UL,

0x00008000UL, 0x00010000UL, 0x00020000UL,

0x00040000UL, 0x00080000UL, 0x00100000UL,

0x00200000UL, 0x00400000UL, 0x00800000UL,

0x01000000UL, 0x02000000UL, 0x04000000UL,

0x08000000UL, 0x10000000UL, 0x20000000UL,

0x40000000UL, 0x80000000UL};

unsigned long Reverse(

unsigned long value,

unsigned int bitcount)

{

unsigned long result = 0;

for (unsigned int jj=0;jj<bitcount;++jj)

{

if ((value & bits [jj]) != 0)

result |= bits [bitcount - jj - 1];

}

return result;

}

unsigned long ReverseTableEntry(

unsigned int polynomial,

unsigned int entryindex,

unsigned int bitcount)

{

unsigned long result = entryindex;

for (unsigned int ii=0;ii < 8; ++ii)

{

if ((result & 1) == 0)

result >>= 1;

else

result = (result >> 1) ^

Reverse(polynomial, bitcount);

}

unsigned long mask =

((1UL << (bitcount - 1)) - 1) |

(1UL << (bitcount - 1));

result &= mask;

return result;

}

Here is the class constructor and defini-
tion for the lookup table:

template <

unsigned int BITCOUNT,

unsigned long POLYNOMIAL,

bool REVERSE,

unsigned long INITIAL,

unsigned long FINALMASK>

const CrcTable Crc<

BITCOUNT,

POLYNOMIAL,REVERSE,INITIAL,

FINALMASK>::crc_table;

template <

unsigned int BITCOUNT,

unsigned long POLYNOMIAL,

bool REVERSE,

unsigned long INITIAL,

unsigned long FINALMASK>

Crc<BITCOUNT,POLYNOMIAL, REVERSE,

INITIAL,FINALMASK>::CrcTable::CrcTable()

{

if (REVERSE) {

for(unsigned int ii=0;

ii<MAXBYTEVALUES; ++ii) {

values [ii] =

ReverseTableEntry(

POLYNOMIAL, ii, BITCOUNT);

}

} else {

for(unsigned int ii=0;

ii<MAXBYTEVALUES; ++ii) {

values [ii] = ForwardTableEntry(

POLYNOMIAL, ii, BITCOUNT);

}

}

}

The lookup table is a static member ob-
ject so that all equivalent instantiations
share the same table. The table defines a
constructor that initializes it at startup.

The reset() function on the following
page initializes the CRC using the value
specified in the template parameter. Use
this function when you want to use a
CRC object to calculate the CRC value for
more than one block of data.

template <

unsigned int BITCOUNT,

C++Builder Developer’s Journal12

unsigned long POLYNOMIAL,

bool REVERSE,

unsigned long INITIAL,

unsigned long FINALMASK>

void Crc<BITCOUNT,POLYNOMIAL,

REVERSE,INITIAL,FINALMASK>::reset()

{

crc_register = INITIAL;

return;

}

The update() function updates the CRC
register using a data block:

template <

unsigned int BITCOUNT,

unsigned long POLYNOMIAL,

bool REVERSE,

unsigned long INITIAL,

unsigned long FINALMASK>

void Crc<BITCOUNT,POLYNOMIAL,

REVERSE,INITIAL,FINALMASK>

::update(const char *buffer,

unsigned int length)

{

// The process for updating depends upon

// whether or not we are using the

reversed

// CRC form.

if (REVERSE)

{

for (unsigned int ii=0;ii<length;++ii)

{

crc_register = crc_table.values

[(crc_register ^ buffer[ii]) & 0xFF]

^ (crc_register >> 8);

}

} else {

for (unsigned int ii=0;ii<length;++ii)

{

unsigned long index = (

(crc_register >> (BITCOUNT -

BITSPERBYTE)) ^ buffer[ii]);

crc_register =

crc_table.values[index & 0xFF] ^

(crc_register << BITSPERBYTE);

}

}

return;

}

The value() function returns the contents
of the CRC register XORed with the
FINALMASK template parameter:

template <unsigned int BITCOUNT,

unsigned long POLYNOMIAL,

bool REVERSE,

unsigned long INITIAL,

unsigned long FINALMASK>

unsigned long Crc<BITCOUNT,POLYNOMIAL,

REVERSE,INITIAL,FINALMASK>::value()

const

{

unsigned long result =

crc_register ^ FINALMASK;

// The initial value is

// 1 << BITCOUNT - 1. The convolutions

// prevent an integer overflow.

static const unsigned long mask =

((1UL << (BITCOUNT - 1)) - 1UL) |

(1UL << (BITCOUNT - 1));

result &= mask;

return result;

}

The example program for this article in-
cludes the copy constructor, default con-
structor, and assignment operator. You
can download the example from our Web
site at www.reisdorph.com.

Using the CRC Template Class
You need to create a header file and com-
pilation for each CRC class you want to
create from the template. To create a
CRC-32 class you would create the head-
er file CRC32.H that defines a type that
uses the values in Table A as template
parameters:

#include “crc.h”

typedef Crc <32, 0x04C11DB7,

true, 0xFFFFFFFF, 0xFFFFFFFF> Crc32;

To create the compilation unit CRC32.CPP,
all you need are include directives.

#include “crc32.h”

#include “crc.cpp”

When you compile the CRC32.CPP file
you must use the -Ja switch either at the
command line or using

#pragma option -Ja

This ensures that the template members
get created properly.

The following console application ex-
ample shows how to use the Crc32 class to
calculate the CRC-32 value for the string
“abcdefgh12345678.”

August 1999 13www.reisdorph.com

#include <iostream>

#include <cstring>

using namespace std;

#include “crc32.h”

const char *msg1 = “abcdefgh”;

const char *msg2 = “12345678”;

main()

{

Crc32 crc;

crc.update(msg1, strlen(msg1));

crc.update(msg2, strlen(msg2));

cout << hex << crc.value() << endl;

return 0;

}

Don’t be concerned over efficiency be-
cause of the tests for reversed CRC in the

update function. Since the value in the
test is a constant, you can be assured that
any compiler will optimize these tests
out.

Conclusion
The CRC is an effective and efficient
method for detecting corruption in data.
A template implementation allows many
CRC variants to be implemented with
one set of code. The template CRC class
shown here allows you easily incorporate
data verification in your applications. u

Registering AnsiString property editors
by Kent Reisdorph

One of the most powerful features
of C++Builder is the ability to
create your own components.

Certainly not all of you are writing your
own components. Even fewer of you
have written property editors for your
components. On the other hand, if you
have written a property editor for a prop-
erty based on AnsiString, you almost cer-
tainly ran into serious problems trying to
register the property editor.

Simply put, the VCL will not let you
register a property editor for a property
based on AnsiString. This article will ex-
plain how to register a property editor
for an AnsiString property.

As part of this article I’ll also show you
how to register property editors for the
C++ integral data types such as int, char,
long, and so on.

Identifying the problem
You’ve just written a property editor and,
of course, you’re proud of your creation.
All you have to do is register the proper-
ty editor and try it out for the first time.
Naturally, you try to register the property
editor with the following code.

RegisterPropertyEditor(__typeinfo(String),

__classid(TMyComponent), “FileName”,

__classid(TMyFileNameEditor));

You compile the package and are imme-
diately greeted with an error from the
compiler:

__classid requires VCL style class type.

At this point most of you would try to
work out the problem and, no doubt,
throw your hands up in frustration a few
miserable hours later. This is the kind of
error that is not easily understood, nor
remedied.

The problem is that __typinfo used in
RegisterPropertyEditor() requires a VCL-
derived class or a Pascal data type.
AnsiString, being a pure C++ helper
class, is not derived from any VCL class
and, as such, does not qualify for use
with __typeinfo. This problem not only
affects AnsiString property editors, but
also property editors for properties based
on C++ types such as int or char.

Now that you see what the problem is,
I’ll explain the solution.

The solution(s)
There are at least three solutions for the
AnsiString property editor dilemma. One
solution to the AnsiString property editor

C++Builder Developer’s Journal14

problem involved deriving a class from
TPersistent and declaring an AnsiString as
a class member. The class itself was regis-
tered as the type for the property and the
AnsiString data member held the string
data. This solution, while the only one
available for a long time, is messy. I won’t
go into the details, but you can take my
word for it.

The remaining two solutions are easier
as you’ll see in the following sections.

The Van Ditta solution
Several months ago I read a post from
Mark Van Ditta in the Borland news-
groups. Mark described how he had
solved the AnsiString property editor
problem. The solution was both simple
and ingenious. Mark was determined to
solve the AnsiString property editor prob-
lem. He discovered that the __typeinfo
keyword was emulating what the Object
Pascal TypeInfo() function does—return a
pointer to a TTypeInfo structure. (Later I
realized that the VCL help for
RegisterPropertyEditor() has a hint that
pointed in this direction.) With that infor-
mation Mark created a function that can
be used with RegisterPropertyEditor().
The function looked something like this:

TTypeInfo* AnsiStringTypeInfo()

{

TTypeInfo* typeInfo = new TTypeInfo;

typeInfo->Name = “AnsiString”;

typeInfo->Kind = tkLString;

return typeInfo;

}

Like I said, simple yet ingenious. This
function simply creates a dynamic in-
stance of the TTypeInfo structure, sets the
Name and Kind members of the structure,
and then returns a pointer to the struc-
ture. (You don’t need to delete the mem-
ory associated with the structure because
the VCL will take care of it for you.) The
correct call to RegisterPropertyEditor() is
shown below.

RegisterPropertyEditor(

AnsiStringTypeInfo(),

__classid(TMyComponent), “FileName”,

__classid(TMyFileNameEditor));

So long as RegisterPropertyEditor() gets a
pointer to a TTypeInfo structure, and as

long as the Name and Kind members of the
structure contain information that the
VCL understands, everything works.

Once you understand the basic idea of
the AnsiStringTypeInfo() function, it’s easy
to create additional functions to register
property editors of the integral data
types, such as int. The key is in under-
standing TTypeInfo::Kind. The Kind mem-
ber of TTypeInfo is an enumeration of type
TTypeKind. TTypeKind is defined as follows:

enum TTypeKind {

tkUnknown, tkInteger, tkChar,

tkEnumeration, tkFloat, tkString, tkSet,

tkClass, tkMethod, tkWChar, tkLString,

tkWString, tkVariant, tkArray, tkRecord,

tkInterface, tkInt64, tkDynArray };

Obviously, you can create functions simi-
lar to AnsiStringTypeInfo() by using one of
the values of TTypeKind along with a corre-
sponding value for the Name member of
TTypeInfo. Here’s a type info function for
a property of type int:

TTypeInfo* IntTypeInfo(void)

{

TTypeInfo* typeInfo = new TTypeInfo;

typeInfo->Name = “int”;

typeInfo->Kind = tkInteger;

return typeInfo;

}

Note that I set the Name member to “int”
and the Kind member to tkInteger. Some
trial and error is required in order to get
the Name and Kind members synchronized,
but for the most part it’s pretty obvious
what to pass for the Name member, given a
known type. If your property editors
don’t work then you may have to try dif-
ferent values for the Name member until
the property editor works.

The Mitov solution
Another solution was recently presented
to me by Boian Mitov. Boian’s solution
looks like this:

TPropInfo* PropInfo = ::GetPropInfo

(__typeinfo(TMyComponent), “FileName”);

RegisterPropertyEditor(*PropInfo-

>PropType,

__classid(TMyComponent), “FileName”,

__classid(TMyFileNameEditor));

BUILDER
Developer’s Journal

Tips & techniques for Borland C++Builder

++++
This solution is actually a bit cleaner than the first solution presented.
In this case a pointer to a TPropInfo structure is used. The property in-
formation for a particular property is first obtained by a call to
GetPropInfo(). The result is a pointer to a TPropInfo structure. TPropInfo is
defined in TYPEINFO.HPP:

struct TPropInfo

{

PTypeInfo *PropType;

void *GetProc;

void *SetProc;

void *StoredProc;

int Index;

int Default;

short NameIndex;

System::ShortString Name;

};

Notice that the PropType parameter is a pointer to a PTypeInfo type. Since
PTypeInfo is itself a pointer, the PropType member is a pointer to a pointer.
Since PropType is a pointer to a pointer it must be dereferenced before
passing it to the RegisterPropertyEditor() function.

Here’s how the call to RegisterPropertyEditor() looks:

RegisterPropertyEditor(*PropInfo->PropType,

__classid(TMyComponent), “FileName”,

__classid(TMyFileNameEditor));

As I have said, this solution is a bit cleaner than the first solution pre-
sented, although each works equally well. In the end, choose the
method that makes the most sense to you.

Conclusion
Registering AnsiString property editors is as vexing as any aspect of
writing components in C++Builder. Since the first version of the com-
piler, component developers have looked to Borland to provide a rea-
sonable solution to this problem. Unfortunately, each new version of
C++Builder has failed to address the issue.

Thanks to the efforts of Mark Van Ditta and Boian Mitov,
C++Builder programmers have not one, but two solutions to the
problem. u

About our contributors
John M. Miano is the chief engineer with Colosseum Builders, Inc. in
Summit, New Jersey where he works on entertainment and broad-
casting systems. He’s the author of Borland C++ Builder How-To. You
can contact John at Miano@colosseumbuilders.com.

Kent Reisdorph is a senior software engineer at TurboPower Soft-
ware and a member of TeamB, Borland’s volunteer online support
group. He’s the author of Teach Yourself C++ Builder in 21 Days (ISBN
0-672-31020-1) and Teach Yourself C++Builder in 14 Days (ISBN 0-672-
31051-1). You can contact Kent at kentr@turbopower.com.

C++Builder Developer’s Journal is published monthly by
Reisdorph Publishing, P.O. Box 50213, Colorado Springs, CO
80919.

Customer Relations

Customer Relations voice (719) 266-0736
Customer Relations fax (719) 260-7151

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to

Reisdorph Publishing
Attn: Customer Relations
P.O. Box 50213
Colorado Springs, CO 80919

Or contact our Customer Relations department via Internet
e-mail at customer_relations@reisdorph.com.

Editorial

Editor-in-Chief Kent Reisdorph
Copy Editor Jennifer Franzen
Managing Editor Robert A. DelRossi

You may address tips, special requests, and other correspon-
dence to

Reisdorph Publishing
Attn: Editorial
P.O. Box 50213
Colorado Springs, CO 80919

Or contact us via Internet e-mail at editor@reisdorph.com.

Copyright

Copyright © 1999, Reisdorph Publishing. C++Builder
Developer’s Journal is an independently produced publication
of Reisdorph Publishing. All rights reserved. Reproduction in
whole or in part in any form or medium without express written
permission of Reisdorph Publishing is prohibited. Reisdorph
Publishing reserves the right, with respect to submissions, to
revise, republish, and authorize its readers to use the tips sub-
mitted for personal and
commercial use.

Microsoft Windows is a registered trademark of Microsoft
Corporation. C++Builder and Borland are registered trade-
marks of Inprise Corporation. All other product names or serv-
ices identified throughout this journal are trademarks or regis-
tered trademarks of their respective companies.

Price

Domestic $79/yr ($7.00 each)
Outside US $99/yr ($9.00 each)

Back Issues

To order back issues, call Customer Relations at (719) 266-
0736. Back issues cost $7.00 each, $9.00 outside the US. You
can pay with MasterCard, VISA, Discover, or American Express.

For more information on this journal please visit our Web
site at www.reisdorph.com.

Postmaster

Periodicals postage paid in Colorado Springs, CO.
Postmaster: Send address changes to:

Reisdorph Publishing
P.O. Box 50213
Colorado Springs, CO 80919

C++Builder Developer’s Journal16

Please include account number from label with any correspondence.

C++Builder
Technical Support

(888) 683-2378
www.inprise.com

PERIODICALS MAIL

Determining compiler version
by Kent Reisdorph

If you are writing applications or com-
ponents that must compile under dif-
ferent versions of C++Builder then

you may need to determine the version
of the compiler in order to conditionally
compile sections of code. Each version of
the compiler assigns a value to a macro
called __BORLANDC__. You can test the ver-
sion of the compiler by checking the
value of this macro in your code. For
example:

#if (__BORLANDC__ >= 0x530)

#pragma package(smart_init)

#endif

In this case, the #pragma package line is
only compiled if the code is being com-
piled on C++Builder 3 or greater
(C++Builder 1 does not use packages, of
course). We use code like this to insure

that the examples for the journal will
compile under any version of
C++Builder.

You can easily find out the value of
the __BORLANDC__ macro by running this
code under various versions of
C++Builder:

char buff[10];

sprintf(buff, "%x", __BORLANDC__);

Label1->Caption = buff;

Table A shows the values of the
__BORLANDC__ macro for the current ver-
sions of C++Builder.

Armed with this information you can
easily write both applications and compo-
nents that work on all current versions of
C++Builder. u

Table A: Values of __BORLANDC__ by compiler

Value Compiler version

0x520 C++Builder 1

0x530 C++Builder 3

0x540 C++Builder 4

www.reisdorph.com
For this month’s code be sure to visit:

